当前位置: 首页 > news >正文

关于ES的查询

查询结果那么多字段都是什么?

为什么会提到这个问题呢,因为默认ES查询的结果会有很多信息,我们可能并不希望要那么多数据,所以你需要了解这些字段都表示什么,并正确的返回和使用它们。

took– Elasticsearch 运行查询所用的时间(以毫秒为单位)
timed_out– 搜索请求是否超时
_shards– 搜索了多少个分片以及分片数量的细分 成功、失败或被跳过。
max_score– 找到的最相关文件的分数
hits.total.value- 找到的匹配文档数量
hits.sort- 文档的排序位置(不按 Relevance Score 排序时)
hits._score- 文档的相关性分数(在使用match_all)每个搜索请求都是独立的:Elasticsearch 不维护任何 state 信息。要分页浏览搜索结果,请指定 请求中的 and 参数。from size

常见搜索查询示例及解释

注意:我这里先说明一下,下面遇到了可再体会,mappings指定了字段格式,所以查询时与mappings也是有关系的,不同的字段类型查询的语法可能会不同。

从全部数据中排序分页

GET /myes_client_test/_search
{"query": { "match_all": {} },	"sort": [{ "id": "asc" }],"from": 10,"size": 10
}GET /这里是我的索引/_search  (本文中只解释这一次哦);
query 表示查询,match_all:{} 表示查询所有(固定格式);
sort 表示结果要按什么规则排序,id是你数据中的字段,支持asc/desc升序/降序;
from 表示跳过多少条开始取值,类似mysql的offset;
size 表示结果要返回多少条数据,类似mysql的limit;
通过上面解释了解哪些是关键字,哪些是自己数据中的字段了吧?需要多加练习

查询数字字段的最大值/最小值

POST /myes_client_test/_search?size=0
{"aggs": {"max_id": { "max": { "field": "id" } }}
}
aggs 表示使用ES聚合模式查询;
max_id 是自定义的,类似SQL中AS的作用‘select max(id) as max_id’为取值时起个好听的名字;
max 是关键字最大值;
field 是关键字,指定按数据中id字段筛选取最大值;
⚠️ size=0 也很重要,因为ES默认会返回10条文档数据,指定size=0表示我们只需要聚合的结果就好了,不需要文档数据。min 是最小值关键字,知道该怎么用了吧?

字符串查询条件

# 例如按姓名查询,在SQL中最常用到条件
name = '张三'				(可以利用到索引,性能较好)
name like '张三%'		(可以利用到索引,性能较好)
name like '%张三'		(不能利用到索引,性能差)
name like '%张三%'		(不能利用到索引,性能差)
# 那么上面几种情况在ES如何实现呢?
1.精准查询
POST /_sql?format=txt
{"query": "SELECT * FROM myes_client_test WHERE name = '张玉霞'"
}同
POST /myes_client_test/_search
{"size" : 1,"query" : {"term" : {"name.keyword" : {"value" : "张玉霞"}}},"_source" : true
}
上面 _source 表示是否返回 _source 字段(这里面是完整的数据),不指定"_source"默认为true;
term 表示精准匹配;
曾使用下面方式进行查询,但没有查询出来,那么有什么区别呢?:
{"size": 1, "query": {"term": { "name" : "张玉霞" }}
}
这里就要回看mappings了,我在插入数据时并没有去指定mappings,回看索引设置,发现name字段默认是keyword;将字段设置为keyword类型可以使用term加字段.keyword来精确匹配查询。
2.模糊查询 (like)
POST /myes_client_test/_search
{"size" : 10,"query" : {"wildcard" : {"name.keyword" : {"wildcard" : "张玉*"}}}
}
模糊查询时 size 字段是有效的,如果上面匹配的结果数>10 那么最多返回10条。
wildcard 表示通配符查询,*同SQL中%的效果。

相关文章:

关于ES的查询

查询结果那么多字段都是什么? 为什么会提到这个问题呢,因为默认ES查询的结果会有很多信息,我们可能并不希望要那么多数据,所以你需要了解这些字段都表示什么,并正确的返回和使用它们。 took– Elasticsearch 运行查询…...

数据结构初识

目录 1.初识 2.时间复杂度 常见时间复杂度举例: 3.空间复杂度 4.包装类&简单认识泛型 4.1装箱和拆箱 5.泛型 6.泛型的上界 7.泛型方法 8.List接口 1.初识 1.多画图 2.多思考 3.多写代码 4.多做题 牛客网-题库/在线编程/剑指offer 算法篇&#xff1a…...

保存数据到Oracle时报错ORA-17004: 列类型无效: 1111

1、问题描述: 关键信息:Mybatis;Oracle (1)保存信息到Oracle时报错: Caused by: org.apache.ibatis.type.TypeException: Error setting null for parameter #10 with JdbcType OTHER . Try setting a dif…...

Excel——宏教程(1)

Microsoft excel是一款功能非常强大的电子表格软件。它可以轻松地完成数据的各类数学运算,并用各种二维或三维图形形象地表示出来,从而大大简化了数据的处理工作。但若仅利用excel的常用功能来处理较复杂的数据,可能仍需进行大量的人工操作。…...

论文浅尝 | MindMap:知识图谱提示激发大型语言模型中的思维图(ACL2024)

笔记整理:和东顺,天津大学硕士,研究方向为软件缺陷分析 论文链接:https://aclanthology.org/2024.acl-long.558/ 发表会议:ACL 2024 1. 动机 虽然大语言模型(LLMs)已经在自然语言理解和生成任务…...

第6章:TDengine 标签索引和删除数据

TDengine 标签索引和删除数据 目标 掌握标签索引的创建、删除掌握超表、子表创建以及数据删除删除数据 删除数据是 TDengine 提供的根据指定时间段删除指定表或超级表中数据记录的功能,方便用户清理由于设备故障等原因产生的异常数据。 注意:删除数据并不会立即释放该表所…...

【微软:多模态基础模型】(5)多模态大模型:通过LLM训练

欢迎关注[【youcans的AGI学习笔记】](https://blog.csdn.net/youcans/category_12244543.html)原创作品 【微软:多模态基础模型】(1)从专家到通用助手 【微软:多模态基础模型】(2)视觉理解 【微…...

海外带云仓多语言商城源码,多语言多商家云仓一键代发商城

新增海外仓,云仓国际供应链系统,商家可登陆云仓进行批量发货 商城修复了一些bug以及增加了订单数字提示,优化加载速度,二开了一些细微功能 基于 PHP Laravel 框架开发的一款 Web 商城系统。 1.前端多国语言自由切换,…...

android:taskAffinity 对Activity退出时跳转的影响

android:taskAffinity 对Activity跳转的影响 概述taskAffinity 的工作机制taskAffinity对 Activity 跳转的影响一个实际的开发问题总结参考 概述 在 Android 开发中,任务栈(Task)是一个核心概念。它决定了应用程序的 Activity 如何相互交互以…...

Apache Dolphinscheduler数据质量源码分析

Apache DolphinScheduler 是一个分布式、易扩展的可视化数据工作流任务调度系统,广泛应用于数据调度和处理领域。 在大规模数据工程项目中,数据质量的管理至关重要,而 DolphinScheduler 也提供了数据质量检查的计算能力。本文将对 Apache Do…...

solana链上智能合约开发案例一则

环境搭建 安装Solana CLI:Solana CLI是开发Solana应用的基础工具。你可以通过官方文档提供的安装步骤,在本地环境中安装适合你操作系统的Solana CLI版本。安装完成后,使用命令行工具进行配置,例如设置网络环境(如开发网…...

使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类

在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。 环…...

车轮上的科技:Spring Boot汽车新闻集散地

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理汽车资讯网站的相关信息成为必然。开发合适…...

IDEA2023 SpringBoot整合Web开发(二)

一、SpringBoot介绍 由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。SpringBoot提供了一种新的编程范式,可以更加快速便捷…...

国产三维CAD 2025新动向:推进MBD模式,联通企业设计-制造数据

本文为CAD芯智库原创整理,未经允许请勿复制、转载! 上一篇文章阿芯分享了影响企业数字化转型的「MBD」是什么、对企业优化产品设计流程有何价值——这也是国产三维CAD软件中望3D 2024发布会上,胡其登先生(中望软件产品规划与GTM中…...

ubuntu 之 安装mysql8

安装 # 如果 ubuntu 版本 > 20.04 则不用执行 wget 这步 wget https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.debsudo apt-get updatesudo apt-get install mysql-server mysql-client 安装过程中如果没有提示输入密码 sudo cat /etc/mysql/debian.cnf # 查…...

Flink Lookup Join(维表 Join)

Lookup Join 定义(支持 Batch\Streaming) Lookup Join 其实就是维表 Join,比如拿离线数仓来说,常常会有用户画像,设备画像等数据,而对应到实时数仓场景中,这种实时获取外部缓存的 Join 就叫做维…...

Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!

作者:来自 Elastic Panagiotis Bailis Elasticsearch 检索器经过了重大改进,现在可供所有人使用。了解其架构和用例。 在这篇博文中,我们将再次深入探讨检索器(retrievers)。我们已经在之前的博文中讨论过它们&#xf…...

【并发模式】Go 常见并发模式实现Runner、Pool、Work

通过并发编程在 Go 程序中实现的3种常见的并发模式。 参考:https://cloud.tencent.com/developer/article/1720733 1、Runner 定时任务 Runner 模式有代表性,能把(任务队列,超时,系统中断信号)等结合起来…...

【前端知识】Javascript前端框架Vue入门

前端框架VUE入门 概述基础语法介绍组件特性组件注册Props 属性声明事件组件 v-model(双向绑定)插槽Slots内容与出口 组件生命周期样式文件使用1. 直接在<style>标签中写CSS2. 引入外部CSS文件3. 使用CSS预处理器4. 在main.js中全局引入CSS文件5. 使用CSS Modules6. 使用P…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...