【算法设计与分析实训】第1关:求序列的最大字段和
务描述
本关任务:编写用动态规划解决最大字段和问题。
相关知识
为了完成本关任务,你需要掌握:动态规划。
编程要求
给定由n个整数(可能为负数)组成的序列:a1,a2,……,an, 求该序列的最大子段和。当所有整数均为负数,定义其最大子段和为0。
解题思路:
定义b[j]=max(a[i]+a[i+1]+…+a[j]),其中1<=i<=j,并且1<=j<=n。那么所求的最大子段和可以表示为max b[j],1<=j<=n。
由b[j]的定义可知,当b[j−1]>0时b[j]=b[j−1]+a[j],否则b[j]=a[j]。故b[j]的动态规划递归表达式为:
b[j]=max(b[j−1]+a[j],a[j]),1<=j<=n。
测试说明
平台会对你编写的代码进行测试:
测试输入:
6
-2 11 -4 13 -5 -2
输出示例:
20
开始你的任务吧,祝你成功!
package step1;
import java.util.Scanner;public class MaxSubSum{public static void main(String[] args) {Scanner scanner = new Scanner(System.in);// 读取第一个整数N,表示数组的长度int n = scanner.nextInt();// 创建两个整型数组,a用于存储输入的整数,b用于动态规划存储的中间结果,int[] a = new int[n + 1];int[] b = new int[n + 1];// 初始数组第0个元素为0a[0] = 0;b[0] = 0;// 读取n个整数,存入数组a中for (int i = 1; i < n + 1; i++) {//小于10a[i] = scanner.nextInt();}// 关闭scanner对象scanner.close();// 初始化最大子数组和为0int maxnum = 0;// 动态规划计算最大子数组的和for (int i = 1; i <= n; i++) {//这个地方的等于9b[i] = max(b[i - 1] + a[i], a[i]);// 更新全局最大子数组的和maxnum = max(maxnum,b[i]);}// 输出最大子数组的和System.out.println(maxnum);}// 辅助private static int max(int x, int y) {if (x >= y) {return x;}return y;}
}
具体解释
这段代码是用来解决“最大子数组和”问题的,常见的动态规划问题。题目要求找到一个连续子数组,使得这个子数组的元素之和最大。你给出的代码实现了这个算法,并使用了动态规划的思想来解决。
代码步骤解释
-
输入处理:
- 代码首先从输入中读取一个整数
n
,表示数组的长度。 - 然后,创建了两个数组
a
和b
,它们的大小都为n + 1
,并初始化了这两个数组的第一个元素a[0]
和b[0]
为 0。 - 数组
a
用于存储输入的整数(即题目给定的数组)。 - 数组
b
用来存储动态规划计算的中间结果,表示以某个元素结尾的最大子数组和。
- 代码首先从输入中读取一个整数
-
填充输入数据:
- 程序通过
for
循环读取接下来的n
个整数,填充到数组a
中。
- 程序通过
-
动态规划计算:
- 程序使用动态规划来计算最大子数组和。
b[i]
表示以a[i]
这个元素结尾的子数组的最大和。 - 对于每个
i
,b[i]
是由以下两者中的较大值决定的:b[i - 1] + a[i]
:表示将当前元素a[i]
加入到前面子数组的和中,形成一个新的子数组。a[i]
:表示以当前元素a[i]
开始一个新的子数组。
- 动态规划的核心思想就是选择这两个中的最大值,确保我们在每一步都得到最大的子数组和。
- 程序使用动态规划来计算最大子数组和。
-
更新最大值:
- 每次计算出
b[i]
后,程序更新一个变量maxnum
,记录迄今为止的最大子数组和。
- 每次计算出
-
输出结果:
- 最终,程序输出
maxnum
,即最大子数组的和。
- 最终,程序输出
辅助方法 max(int x, int y)
:
这个方法简单地返回 x
和 y
中较大的那个值,用于在动态规划过程中选择更新 b[i]
和 maxnum
时用到。
代码运行实例:
假设我们输入如下数据:
n = 5
数组 = -2 1 -3 4 -1 2 1 -5 4
步骤解析:
-
输入数组:
a = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
在这里,我们将
a[0]
设为0
,所以实际存储的数组a
为:a = [0, -2, 1, -3, 4, -1, 2, 1, -5, 4]
-
初始化
b
数组:b = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
-
计算
b
数组并更新maxnum
:-
i = 1
:
b[1] = max(b[0] + a[1], a[1]) = max(0 + (-2), -2) = -2
maxnum = max(maxnum, b[1]) = max(0, -2) = 0
-
i = 2
:
b[2] = max(b[1] + a[2], a[2]) = max(-2 + 1, 1) = 1
maxnum = max(maxnum, b[2]) = max(0, 1) = 1
-
i = 3
:
b[3] = max(b[2] + a[3], a[3]) = max(1 + (-3), -3) = -2
maxnum = max(maxnum, b[3]) = max(1, -2) = 1
-
i = 4
:
b[4] = max(b[3] + a[4], a[4]) = max(-2 + 4, 4) = 4
maxnum = max(maxnum, b[4]) = max(1, 4) = 4
-
i = 5
:
b[5] = max(b[4] + a[5], a[5]) = max(4 + (-1), -1) = 3
maxnum = max(maxnum, b[5]) = max(4, 3) = 4
-
i = 6
:
b[6] = max(b[5] + a[6], a[6]) = max(3 + 2, 2) = 5
maxnum = max(maxnum, b[6]) = max(4, 5) = 5
-
i = 7
:
b[7] = max(b[6] + a[7], a[7]) = max(5 + 1, 1) = 6
maxnum = max(maxnum, b[7]) = max(5, 6) = 6
-
i = 8
:
b[8] = max(b[7] + a[8], a[8]) = max(6 + (-5), -5) = 1
maxnum = max(maxnum, b[8]) = max(6, 1) = 6
-
i = 9
:
b[9] = max(b[8] + a[9], a[9]) = max(1 + 4, 4) = 5
maxnum = max(maxnum, b[9]) = max(6, 5) = 6
-
-
输出结果:
- 最终的最大子数组和
maxnum
是6
,所以程序会输出6
。
- 最终的最大子数组和
总结:
这个算法通过动态规划方法,通过迭代每个元素来更新当前的最大子数组和。时间复杂度是 O(n),其中 n
是数组的长度,因为我们只需要遍历一遍数组来计算最大子数组和。
深度解析举例
这段代码实现了一个经典的算法——最大子数组和问题(Maximum Subarray Problem)。具体来说,给定一个整数数组,找出其中连续子数组的最大和。这个问题可以通过动态规划来解决。
代码解释
-
导入Scanner类:
import java.util.Scanner;
这行代码引入了Java标准库中的
Scanner
类,用于从控制台读取用户输入。 -
定义主类MaxSubSum:
public class MaxSubSum {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);
定义了一个名为
MaxSubSum
的公共类,并在其内部定义了main
方法作为程序入口点。同时创建了一个Scanner
对象用于读取用户输入。 -
读取数组长度及初始化数组:
int n = scanner.nextInt();int[] a = new int[n + 1];int[] b = new int[n + 1];a[0] = 0;b[0] = 0;
用户首先输入一个整数
n
,表示接下来要输入的整数数量。然后创建两个大小为n+1
的整型数组a
和b
。数组a
用于存储用户输入的整数,而数组b
则用于存储动态规划过程中计算得到的中间结果。这里将这两个数组的第一个元素初始化为0。 -
读取用户输入的整数并存入数组a中:
for (int i = 1; i <= n; i++) {a[i] = scanner.nextInt();}scanner.close();
使用for循环依次读取
n
个整数,并将其存入数组a
中。最后关闭scanner
对象以释放资源。 -
动态规划计算最大子数组和:
int maxnum = 0;for (int i = 1; i <= n; i++) {b[i] = Math.max(b[i - 1] + a[i], a[i]);maxnum = Math.max(maxnum, b[i]);}
初始化变量
maxnum
为0,用于记录当前找到的最大子数组和。通过遍历数组a
,利用动态规划的思想更新数组b
,使得b[i]
表示以第i
个元素结尾的最大子数组和。每次更新完b[i]
后,检查是否需要更新全局最大值maxnum
。 -
输出结果:
System.out.println(maxnum);}private static int max(int x, int y) {if (x >= y) {return x;}return y;} }
最后,程序输出全局最大子数组和
maxnum
。此外还定义了一个辅助函数max
,用于比较两个整数并返回较大者。不过实际上,在上述代码中已经使用了Math.max()
函数替代了这个自定义的max
函数,因此该函数并未被调用。
实例
假设用户输入如下数据:
5
-2 1 -3 4 -1 2 1 -5 4
程序执行过程如下:
n=5
,即接下来会输入5个整数。- 输入的整数分别为:
-2, 1, -3, 4, -1
。 - 动态规划计算最大子数组和的过程如下表所示:
i | a[i] | b[i] = max(b[i-1]+a[i], a[i]) | maxnum |
---|---|---|---|
1 | -2 | max(0±2, -2) | -2 |
2 | 1 | max(-2+1, 1) | 1 |
3 | -3 | max(1±3, -3) | 1 |
4 | 4 | max(1+4, 4) | 5 |
5 | -1 | max(5±1, -1) | 5 |
最终,程序输出的结果是5
,这对应于原数组中的子数组[4, -1, 2, 1]
的最大和。
相关文章:
【算法设计与分析实训】第1关:求序列的最大字段和
务描述 本关任务:编写用动态规划解决最大字段和问题。 相关知识 为了完成本关任务,你需要掌握:动态规划。 编程要求 给定由n个整数(可能为负数)组成的序列:a1,a2,……,an, 求该序列的最大子段和。当所有整…...

【澜舟科技-注册/登录安全分析报告】
前言 由于网站注册入口容易被机器执行自动化程序攻击,存在如下风险: 暴力破解密码,造成用户信息泄露,不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 ,造成用户无法登陆、注册,大量收到垃圾短信的…...

【读书笔记-《网络是怎样连接的》- 7】Chapter3_2 路由器
本篇继续介绍路由器及其转发过程。 1 路由器内部结构 路由器内部结构图如图所示。 即主要包含左侧的包转发模块和右侧的端口模块。转发模块负责查找包的发送目的地,端口模块完成包的发送。通过安装不同的硬件,转发模块不仅可以支持以太网,也…...
Android Activity 基础接口知识和常见问题
Activity 知识点及问题点 接口onMultiWindowModeChangedonConfigurationChanged 常见问题Android解决点击桌面图标,就重新启动应用程序问题 接口 onMultiWindowModeChanged 定义 onMultiWindowModeChanged是Android中Activity类的一个回调方法。它会在活动…...
利用python 检测当前目录下的所有PDF 并转化为png 格式
以下是一个完整的 Python 脚本,用于检测当前目录下的所有 PDF 文件并将每一页转换为 PNG 格式: import os from pdf2image import convert_from_path# 设置输出图像的 DPI(分辨率) DPI 300# 获取当前目录 current_directory os…...
解决 Spring Boot 中 `Ambiguous mapping. Cannot map ‘xxxController‘ method` 错误
前言 在使用 Spring Boot 开发 Web 应用时,经常会遇到各种各样的错误。其中一种常见的错误是 Ambiguous mapping. Cannot map ‘testController‘ method。本文将详细介绍这个错误的原因及解决方法,帮助开发者快速定位并解决问题。 错误解释 这个错误…...
C++ 函数返回值优化
本文中部分内容来自下面的文章,还有一部分来自智谱清言 C 返回值优化_c 局部变量返回优化-CSDN博客 elision:省略 copy elision:拷贝省略 RVO (Return Value Optimization):返回值优化 ------ 我最近也遇到了上面博文中说到的问题&…...

c++源码阅读__ThreadPool__正文阅读
一. 简介 本章我们开始阅读c git 高星开源项目ThreadPool, 这是一个纯c的线程池项目, 并且代码量极小, 非常适合新手阅读 git地址: progschj / ThreadPool 二. 前提知识 为了面对不同读者对c掌握情况不同的情况, 这里我会将基本上稍微值得一说的前提知识点, 全部专门写成一篇…...
关于ES的查询
查询结果那么多字段都是什么? 为什么会提到这个问题呢,因为默认ES查询的结果会有很多信息,我们可能并不希望要那么多数据,所以你需要了解这些字段都表示什么,并正确的返回和使用它们。 took– Elasticsearch 运行查询…...

数据结构初识
目录 1.初识 2.时间复杂度 常见时间复杂度举例: 3.空间复杂度 4.包装类&简单认识泛型 4.1装箱和拆箱 5.泛型 6.泛型的上界 7.泛型方法 8.List接口 1.初识 1.多画图 2.多思考 3.多写代码 4.多做题 牛客网-题库/在线编程/剑指offer 算法篇:…...
保存数据到Oracle时报错ORA-17004: 列类型无效: 1111
1、问题描述: 关键信息:Mybatis;Oracle (1)保存信息到Oracle时报错: Caused by: org.apache.ibatis.type.TypeException: Error setting null for parameter #10 with JdbcType OTHER . Try setting a dif…...
Excel——宏教程(1)
Microsoft excel是一款功能非常强大的电子表格软件。它可以轻松地完成数据的各类数学运算,并用各种二维或三维图形形象地表示出来,从而大大简化了数据的处理工作。但若仅利用excel的常用功能来处理较复杂的数据,可能仍需进行大量的人工操作。…...

论文浅尝 | MindMap:知识图谱提示激发大型语言模型中的思维图(ACL2024)
笔记整理:和东顺,天津大学硕士,研究方向为软件缺陷分析 论文链接:https://aclanthology.org/2024.acl-long.558/ 发表会议:ACL 2024 1. 动机 虽然大语言模型(LLMs)已经在自然语言理解和生成任务…...
第6章:TDengine 标签索引和删除数据
TDengine 标签索引和删除数据 目标 掌握标签索引的创建、删除掌握超表、子表创建以及数据删除删除数据 删除数据是 TDengine 提供的根据指定时间段删除指定表或超级表中数据记录的功能,方便用户清理由于设备故障等原因产生的异常数据。 注意:删除数据并不会立即释放该表所…...

【微软:多模态基础模型】(5)多模态大模型:通过LLM训练
欢迎关注[【youcans的AGI学习笔记】](https://blog.csdn.net/youcans/category_12244543.html)原创作品 【微软:多模态基础模型】(1)从专家到通用助手 【微软:多模态基础模型】(2)视觉理解 【微…...

海外带云仓多语言商城源码,多语言多商家云仓一键代发商城
新增海外仓,云仓国际供应链系统,商家可登陆云仓进行批量发货 商城修复了一些bug以及增加了订单数字提示,优化加载速度,二开了一些细微功能 基于 PHP Laravel 框架开发的一款 Web 商城系统。 1.前端多国语言自由切换,…...

android:taskAffinity 对Activity退出时跳转的影响
android:taskAffinity 对Activity跳转的影响 概述taskAffinity 的工作机制taskAffinity对 Activity 跳转的影响一个实际的开发问题总结参考 概述 在 Android 开发中,任务栈(Task)是一个核心概念。它决定了应用程序的 Activity 如何相互交互以…...

Apache Dolphinscheduler数据质量源码分析
Apache DolphinScheduler 是一个分布式、易扩展的可视化数据工作流任务调度系统,广泛应用于数据调度和处理领域。 在大规模数据工程项目中,数据质量的管理至关重要,而 DolphinScheduler 也提供了数据质量检查的计算能力。本文将对 Apache Do…...

solana链上智能合约开发案例一则
环境搭建 安装Solana CLI:Solana CLI是开发Solana应用的基础工具。你可以通过官方文档提供的安装步骤,在本地环境中安装适合你操作系统的Solana CLI版本。安装完成后,使用命令行工具进行配置,例如设置网络环境(如开发网…...

使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。 环…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...