利用RAGflow和LM Studio建立食品法规问答系统
前言
食品企业在管理标准、法规,特别是食品原料、特殊食品法规时,难以通过速查法规得到准确的结果。随着AI技术的发展,互联网上出现很多AI知识库的解决方案。
经过一轮测试,找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉淀方法论、打通业务壁垒、形成业务闭环、提升用户感知度、赋能AI新赛道。
作者测试了钉钉内置AI、Defy.AI、fastGPT、FoodGPT、通义法睿、RAGflow+LM Studio、AnythingLLM,优缺点如下:
| AI | 优点 | 缺点 |
|---|---|---|
| 钉钉内置AI | 零代码部署、免费 | 一本正经地胡说八道、不保证数据安全。知识库占用云盘空间 |
| Defy.AI | 在线版零代码部署,本地版安全可控 | 在线版收费、不保证数据安全,本地部署难度高。一本正经地胡说八道 |
| AnythingLLM | 零代码本地部署 | 一本正经地胡说八道 |
| fastGPT | 在线版零代码部署,本地版安全可控。 | 在线版收费、不保证数据安全,本地部署难度高。本地、在线版都收费。 |
| FoodGPT | 回答精准,针对食品行业优化 | 收费,不能定制 |
| 通义法睿 | 回答精准、详实 | 不能定制 |
| RAGflow+LM Studio | 本地低代码部署,回答较为精准。自由选择模型。可定制。 | 性能不太好 |
收费模式:每个问题多少钱或按照embedding和提问小号的Token数收费。
硬件、环境要求
电脑至少需要4核CPU、16GB内存、50GB硬盘
需要魔法上网,或者自己配置Docker、Git、HuggingFace国内源
Windows 推荐使用企业版或服务器版
需要基础的读Windows和Linux代码能力,解决报错的能力
部署LM Studio
- 在lmstudio.ai 下载LM Studio,在ModelScope或Huggingface下载大语言模型文件(文件格式必须是.gguf)
- 将模型导入至LM Studio后创建LocalSever,记住端口号
部署RAGflow
按照GitHub infiniflow/ragflow的步骤部署即可,注意软件不要放在C盘!注意软件不要放在C盘!注意软件不要放在C盘!
浏览器输入网址http://localhost/login,先注册账号
配置好Model Providers,Base url填写http://host.docker.internal:[LM Studio端口号]/v1/models
切换到Knowledge Base,上传文件即可,支持word、excel、pdf、txt、图片等格式;可以选择文件类型,如图书、文献、法律等;模型不要改
上传后要在Action列中点绿色开始键,开始embedding,完成后才算完成知识库导入
切换到Chat标签页,点击Create an Assisstant
Knowledgebase选中导入的知识库,切换到Model Setting中Model选择模型,Freedom选择Precise
大功告成!可以提几个问题测试模型是否正常运行
运行
与ChatGPT一样,可以直接向AI提问,见下图

总体效果挺好,回答基本不会胡说八道,并给出了出处。
优缺点
优点:
-
配置简单。
-
- 众所周知,N卡普遍显存很小,但是A卡配置ROCm很麻烦。LM Studio可以一键部署CUDA或ROCm,免除复杂的环境配置。
- RAGflow运行在Docker,直接免除用户配置anaconda、python、pytorch等软件。
-
很好地减轻了AI一本正经的胡说八道的问题。
-
RAG Flow支持手动微调Embedding分块。
-
完全本地运行,数据安全可控。
缺点
- 既吃CPU+内存,又吃GPU+显存,需要配置很高的主机。
- 如果需要在企业部署还要配置域名解析,对RAGflow做二次开发,甚至要做显卡阵列。
- RAGflow不支持原生调用显卡加速,embedding非常耗时。
- RAGflow性能不太好,与在线托管的AI知识库相比响应速度有明显差距,对数据安全不敏感的,不建议使用RAGflow。
其他用法
除了做法规数据库,可以导入各类工作文件,比如公司规章制度、工作流程,沉淀的工作资料,收集的市场报告、文献、专利等。
使用数学模型甚至可能可以做数据处理和统计分析。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
相关文章:
利用RAGflow和LM Studio建立食品法规问答系统
前言 食品企业在管理标准、法规,特别是食品原料、特殊食品法规时,难以通过速查法规得到准确的结果。随着AI技术的发展,互联网上出现很多AI知识库的解决方案。 经过一轮测试,找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉…...
ffplay音频SDL播放处理
1、从解码数组获取到解码后的数据 static int audio_decode_frame(VideoState *is) {int data_size, resampled_data_size;av_unused double audio_clock0;int wanted_nb_samples;Frame *af;if (is->paused)return -1;//音频数组队列获取数据do { #if defined(_WIN32)while …...
自动化仪表故障排除法
自动化仪表主要是指在企业的实际生产工程当中,开展检测、控制、执行以及显示等一系列仪表的总称。合理地利用自动化仪表能够及时地掌握企业生产的动态,并获取相应的数据,从而推动生产过程的有序运行。 在自动化控制系统中,自动化…...
WPF 中 MultiConverter ——XAML中复杂传参方式
1. XAML代码 <!-- 数据库表格 --> <!-- RowHeaderWidth"0": 把默认的行表头隐藏 --> <DataGridx:Name"xDataGrid"Grid.Row"2"hc:DataGridAttach.ShowRowNumber"True"ItemsSource"{Binding WaferInfos, ModeT…...
实验室管理现代化:Spring Boot技术方案
4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式,是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示: 图4-1系统工作原理…...
aws凭证(一)凭证存储
AWS 凭证用于验证身份,并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后,才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢?有以下几个方法: 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置。AWS SDK 也会自动读取配置文件中的凭证。…...
jmeter常用配置元件介绍总结之断言
系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...
JMeter监听器与压测监控之Grafana
Grafana 是一个开源的度量分析和可视化套件,通常用于监控和观察系统和应用的性能。本文将指导你如何在 Kali Linux 上使用 Docker 来部署 Grafana 性能监控平台。 前提条件 Kali Linux:确保你已经安装了 Kali Linux。Docker:确保你的系统已…...
MySQL8 安装教程
一、从官网下载mysql-8.0.18-winx64.zip安装文件( 从 https://dev.mysql.com/downloads/file/?id484900 下载zip版本安装包 mysql-8.0.18-winx64.zip 解压到本地磁盘中,例如解压到:D盘根目录,并改名为MySQL mysql-8.0.34-winx6…...
聚焦 NLP 和生成式 AI 的创新与未来 基础前置知识点
给学生们讲解的技术内容可以根据他们的背景、兴趣和教学目标来规划。以下是一些适合不同阶段和领域的技术主题建议,尤其是与大语言模型(如 ChatGPT)相关的内容: 1. 自然语言处理(NLP)基础 适合对 NLP 了解…...
23种设计模式-访问者(Visitor)设计模式
文章目录 一.什么是访问者模式?二.访问者模式的结构三.访问者模式的应用场景四.访问者模式的优缺点五.访问者模式的C实现六.访问者模式的JAVA实现七.代码解释八.总结 类图: 访问者设计模式类图 一.什么是访问者模式? 访问者模式(…...
ssm150旅游网站的设计与实现+jsp(论文+源码)_kaic
毕 业 设 计(论 文) 题目:旅游网站设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本旅游网站就是在这样的大…...
【SKFramework框架】一、框架介绍
推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享QQ群:398291828小红书小破站 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 【Unity3D框架】SKFramework框架完全教程《全…...
Arcgis地图实战三:自定义导航功能的实现
文章目录 1.最终效果预览2.计算两点之间的距离3.将点线画到地图上4.动态展示点线的变化5.动态画线6.动态画点 1.最终效果预览 2.计算两点之间的距离 let dis this.utilsTools.returnDisByCoorTrans(qdXYData, zdXYData, "4549")当距离小于我们在配置文件中预设置的…...
LLaMA-Factory 上手即用教程
LLaMA-Factory 是一个高效的大型语言模型微调工具,支持多种模型和训练方法,包括预训练、监督微调、强化学习等,同时提供量化技术和实验监控,旨在提高训练速度和模型性能。 官方开源地址:https://github.com/hiyouga/L…...
黑马点评 秒杀下单出现的问题:服务器异常---java.lang.NullPointerException: null(已解决)
前言: 在此之前找了好多资料,查了很多,都没有找到对应解决的方法,虽然知道是userid为空,但不知道要修改哪里,还是自己的debug能力不足,以后得多加练习。。。 问题如下: 点击限时抢…...
购物街项目TabBar的封装
1.TabBar介绍 在购物街项目中 不论页面如何滚动 始终存在一个TabBar固定在该项目的底部 他在该项目中 扮演者选项卡栏的角色 内部存在若干选项 而选项中 固定存在两部分(图片文本) 其中主要涉及到TabBar/TabBarItem这些和业务无关的共享组件(建议存放于components/common中)、…...
C++游戏开发面试题及参考答案
目录 在游戏开发中,为什么选择 C++ 作为编程语言? 为什么 C++ 语言更适合游戏开发? 描述游戏中的碰撞检测的基本原理。 解释游戏中的碰撞检测机制,并用 C++ 举例说明如何实现。 描述游戏中的物理模拟的基本原理。 阐述游戏中的物理模拟,如重力模拟在 C++ 中的实现方…...
字符串的基本操作(C语言版)
一、实验内容: 采用顺序结构存储串,编写一个函数substring(strl,str2),用于判定str2是否为strl的子串;编写一个函数,实现在两个已知字符串中找出所有非空最长公共子串的长度和最长公共子串的个数; ①字符…...
C缺陷与陷阱 — 7 可移植性缺陷
目录 1 应对C语言标准变更 2 标识符的名称限制 3 整数的大小 4 字符是有符号整数还是无符号整数 5 移位运算符 6 内存位置0 7 除法运算时发生的截断 1 应对C语言标准变更 使用新特性可以使代码更容易编写且减少错误,但可能会导致代码在旧编译器上无法编译。…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
