当前位置: 首页 > news >正文

LLaMA与ChatGLM选用比较

目录

1. 开发背景

2. 目标与应用

3. 训练数据

4. 模型架构与规模

5. 开源与社区支持

6. 对话能力

7. 微调与应用

8. 推理速度与资源消耗

总结


LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一些关键的区别,主要体现在以下几个方面:

1. 开发背景

  • LLaMA:由 Meta(Facebook)发布,LLaMA 是一个开源的大型语言模型,旨在提供与 GPT-3 等模型相当的性能,并且支持多种规模(例如 7B, 13B, 30B, 65B 参数版本)。LLaMA 的重点在于提供高效、精简的模型架构,便于研究人员在不同资源限制下进行训练和应用。
  • ChatGLM:由 清华大学 KEG 实验室开发,是一个中文的对话生成语言模型。ChatGLM 在大规模中文语料库上进行了预训练,并且在生成对话和中文自然语言处理(NLP)任务上表现较为优秀。其目标是针对中文和多语言的任务优化,并提供类似 GPT 系列的对

相关文章:

LLaMA与ChatGLM选用比较

目录 1. 开发背景 2. 目标与应用 3. 训练数据 4. 模型架构与规模 5. 开源与社区支持 6. 对话能力 7. 微调与应用 8. 推理速度与资源消耗 总结 LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一…...

GPTZero:高效识别AI生成文本,保障学术诚信与内容原创性

产品描述 GPTZero 是一款先进的AI文本检测工具,专为识别由大型语言模型(如ChatGPT、GPT-4、Bard等)生成的文本而设计。它通过分析文本的复杂性和一致性,判断文本是否可能由人类编写。GPTZero 已经得到了超过100家媒体机构的报道&…...

C/C++ 优化,strlen 示例

目录 C/C optimization, the strlen examplehttps://hallowed-blinker-3ca.notion.site/C-C-optimization-the-strlen-example-108719425da080338d94c79add2bb372 揭开优化的神秘面纱... 让我们来谈谈 CPU 等等,SIMD 是什么? 为什么 strlen 是一个很…...

【动手学深度学习Pytorch】1. 线性回归代码

零实现 导入所需要的包: # %matplotlib inline import random import torch from d2l import torch as d2l import matplotlib.pyplot as plt import matplotlib import os构造人造数据集:假设w[2, -3.4],b4.2,存在随机噪音&…...

深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例

深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例 在PyTorch中,卷积层是构建卷积神经网络(CNNs)的基本单元,广泛用于处理图像和视频中的特征提取任务。通过卷积操作,网络可以有效地学习输入数…...

DataGear 5.2.0 发布,数据可视化分析平台

DataGear 企业版 1.3.0 已发布,欢迎体验! http://datagear.tech/pro/ DataGear 5.2.0 发布,图表插件支持定义依赖库、严重 BUG 修复、功能改进、安全增强,具体更新内容如下: 重构:各模块管理功能访问路径…...

uniapp: vite配置rollup-plugin-visualizer进行小程序依赖可视化分析减少vender.js大小

一、前言 在之前文章《uniapp: 微信小程序包体积超过2M的优化方法(主包从2.7M优化到1.5M以内)》中,提到了6种优化小程序包体积的方法,但并没有涉及如何分析common/vender.js这个文件的优化,而这个文件的大小通常情况下…...

深度学习:如何复现神经网络

深度学习:如何复现神经网络 要复现图中展示的卷积神经网络(CNN),我们需详细了解和配置每层网络的功能与设计理由。以下将具体解释各层的配置以及设计选择的原因,确保网络设计的合理性与有效性。 详细的网络层配置与设…...

Spring Boot与MyBatis-Plus的高效集成

Spring Boot与MyBatis-Plus的高效集成 引言 在现代 Java 开发中,MyBatis-Plus 作为 MyBatis 的增强工具,以其简化 CRUD 操作和无需编写 XML 映射文件的特点,受到了开发者的青睐。本篇文章将带你一步步整合 Spring Boot 与 MyBatis-Plus&…...

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门(一) 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作,只需要拖拽即可完成一个视觉效果…...

Spark RDD sortBy算子执行时进行数据 “采样”是什么意思?

一、sortBy 和 RangePartitioner sortBy 在 Spark 中会在执行排序时采用 rangePartitioner 进行分区,这会影响数据的分区方式,并且这一步骤是通过对数据进行 “采样” 来计算分区的范围。不过,重要的是,sortBy 本身仍然是一个 tr…...

React-useRef与DOM操作

#题引:我认为跟着官方文档学习不会走歪路 ref使用 组件重新渲染时,react组件函数里的代码会重新执行,返回新的JSX,当你希望组件“记住”某些信息,但又不想让这些信息触发新的渲染时,你可以使用ref&#x…...

Mistral AI 发布 Pixtral Large 模型:多模态时代的开源先锋

Mistral AI 最新推出的 Pixtral Large 模型,带来了更强的多模态能力。作为一款开源的多模态模型,它不仅在参数量上达到 1240 亿,更在文本和图像理解上实现了质的飞跃。 模型亮点 1. 多模态能力再升级 Pixtral Large 配备了 123B 参数的解码器…...

Windows、Linux多系统共享蓝牙设备

Windows、Linux多系统共享蓝牙设备 近来遇到一个新问题,就是双系统共享蓝牙鼠标。因为一直喜欢在Windows、Linux双系统之间来回切换,而每次切换系统蓝牙就必须重新配对,当然,通过网络成功解决了问题。 通过这个问题,稍…...

C语言 | Leetcode C语言题解之第564题寻找最近的回文数

题目&#xff1a; 题解&#xff1a; #define MAX_STR_LEN 32 typedef unsigned long long ULL;void reverseStr(char * str) {int n strlen(str);for (int l 0, r n-1; l < r; l, r--) {char c str[l];str[l] str[r];str[r] c;} }ULL * getCandidates(const char * n…...

wsl虚拟机中的dockers容器访问不了物理主机

1 首先保证wsl虚拟机能够访问宿主机IP地址&#xff0c;wsl虚拟机通过vEthernet (WSL)的地址访问&#xff0c;着意味着容器也要通过此IP地址访问物理主机。 2 遇到的问题&#xff1a;wsl虚拟机中安装了docker&#xff0c;用在用到docker容器内的开发环境&#xff0c;但是虚拟机…...

Spark RDD 的宽依赖和窄依赖

通俗地理解 Spark RDD 的 宽依赖 和 窄依赖&#xff0c;可以通过以下比喻和解释&#xff1a; 1. 日常生活比喻 假设你在管理多个团队完成工作任务&#xff1a; 窄依赖&#xff1a;每个团队只需要关注自己的分工&#xff0c;完成自己的任务。例如&#xff0c;一个人将纸张折好&…...

二进制转十进制

解题思路分析 二进制转十进制原理&#xff1a;二进制数转换为十进制数的基本原理是按位权展开相加。对于一个二进制数&#xff0c;从右往左每一位的位权依次是将每一位上的数字&#xff08;0 或 1&#xff09;乘以其对应的位权&#xff0c;然后把所有结果相加&#xff0c;就得…...

深度学习:神经网络中的非线性激活的使用

深度学习&#xff1a;神经网络中的非线性激活的使用 在神经网络中&#xff0c;非线性激活函数是至关重要的组件&#xff0c;它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作&#xff08;如权重相乘和偏…...

Python缓存:两个简单的方法

缓存是一种用于提高应用程序性能的技术&#xff0c;它通过临时存储程序获得的结果&#xff0c;以便在以后需要时重用它们。 在本文中&#xff0c;我们将学习Python中的不同缓存技术&#xff0c;包括functools模块中的 lru_cache和 cache装饰器。 简单示例&#xff1a;Python缓…...

原生微信小程序在顶部胶囊左侧水平设置自定义导航兼容各种手机模型

无论是在什么手机机型下&#xff0c;自定义的导航都和右侧的胶囊水平一条线上。如图下 以上图iphone12&#xff0c;13PRo 以上图是没有带黑色扇帘的机型 以下是调试器看的wxml的代码展示 注意&#xff1a;红色阔里的是自定义导航&#xff08;或者其他的logo啊&#xff0c;返回之…...

经验笔记:远端仓库和本地仓库之间的连接(以Gitee为例)

经验笔记&#xff1a;远端仓库和本地仓库之间的连接 方法一&#xff1a;先创建远端仓库&#xff0c;再克隆到本地 创建远端仓库 登录到你的Git托管平台&#xff08;如Gitee、GitHub、GitLab、Bitbucket等&#xff09;。点击“New Repository”或类似按钮&#xff0c;创建一个新…...

利用RAGflow和LM Studio建立食品法规问答系统

前言 食品企业在管理标准、法规&#xff0c;特别是食品原料、特殊食品法规时&#xff0c;难以通过速查法规得到准确的结果。随着AI技术的发展&#xff0c;互联网上出现很多AI知识库的解决方案。 经过一轮测试&#xff0c;找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉…...

ffplay音频SDL播放处理

1、从解码数组获取到解码后的数据 static int audio_decode_frame(VideoState *is) {int data_size, resampled_data_size;av_unused double audio_clock0;int wanted_nb_samples;Frame *af;if (is->paused)return -1;//音频数组队列获取数据do { #if defined(_WIN32)while …...

自动化仪表故障排除法

自动化仪表主要是指在企业的实际生产工程当中&#xff0c;开展检测、控制、执行以及显示等一系列仪表的总称。合理地利用自动化仪表能够及时地掌握企业生产的动态&#xff0c;并获取相应的数据&#xff0c;从而推动生产过程的有序运行。 在自动化控制系统中&#xff0c;自动化…...

WPF 中 MultiConverter ——XAML中复杂传参方式

1. XAML代码 <!-- 数据库表格 --> <!-- RowHeaderWidth"0": 把默认的行表头隐藏 --> <DataGridx:Name"xDataGrid"Grid.Row"2"hc:DataGridAttach.ShowRowNumber"True"ItemsSource"{Binding WaferInfos, ModeT…...

实验室管理现代化:Spring Boot技术方案

4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式&#xff0c;是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示&#xff1a; 图4-1系统工作原理…...

aws凭证(一)凭证存储

AWS 凭证用于验证身份,并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后,才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢?有以下几个方法: 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置。AWS SDK 也会自动读取配置文件中的凭证。…...

jmeter常用配置元件介绍总结之断言

系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...

JMeter监听器与压测监控之Grafana

Grafana 是一个开源的度量分析和可视化套件&#xff0c;通常用于监控和观察系统和应用的性能。本文将指导你如何在 Kali Linux 上使用 Docker 来部署 Grafana 性能监控平台。 前提条件 Kali Linux&#xff1a;确保你已经安装了 Kali Linux。Docker&#xff1a;确保你的系统已…...

旅游网站设计的目的/深圳市企业网站seo营销工具

日本某地发生了一件谋杀案&#xff0c;警察通过排查确定杀人凶手必为4个嫌疑犯 的一个。以下为4个嫌疑犯的供词。 A说&#xff1a;不是我。 B说&#xff1a;是C。 C说&#xff1a;是D。 D说&#xff1a;C在胡说 已知3个人说了真话&#xff0c;1个人说的是假话。 现在请根据这些…...

网站资源如何做参考文献/百度seo官网

文章目录1. 介绍TCP/IP协议2. 介绍UDP和TCP协议的区别3. 介绍DNS域名解析过程4.介绍HTTP协议1. 介绍TCP/IP协议 TCP/IP不是一个协议&#xff0c;而是一个协议族的统称。里面包括IP协议、IMCP协议、TCP协议…传统上来说 TCP/IP 被认为是一个四层协议 平常我们大部分时间都工作在…...

红色网站建设的作用和意义/平台推广引流

一、股民的迷失投资的核心是风险与回报。风险与回报是利剑的双锋&#xff0c;如影随形&#xff0c;相互匹配。人们天生喜欢回报&#xff0c;厌恶风险&#xff0c;对于投资者来说&#xff0c;追求低风险高回报的策略&#xff0c;以此作为投资者的圣杯。然而&#xff0c;什么是风…...

wordpress手机端慢/torrent种子猫

我使用的是asp.net core 2.2.8&#xff0c;已安装aspnetcore-runtime-2.2.8-win-x64.exe与dotnet-runtime-2.2.8-win-x64.exe&#xff0c;相关设置已配置完毕。IIS服务安装启用正常。 网页搜索发现&#xff0c;是因为AspNetCoreModule这个组件未安装。 //2.2.x 下载地址 http…...

基于asp.net网站开发视频教程/自己做网站难吗

微信回复图文消息 一级POJO只能包含一级子元素&#xff0c;如果是多级子元素&#xff0c;就包含多级对象就可以了&#xff1b; XmlRootElement(name"xml") XmlAccessorType(XmlAccessType.FIELD) public class ScanUrl {private Integer id;XmlElement(name"ToU…...

网站建设与管理案例教程第三版答案/seo优化师

Lucene教程 1 lucene简介1.1 什么是lucene Lucene是一个全文搜索框架&#xff0c;而不是应用产品。因此它并不像www.baidu.com 或者google Desktop那么拿来就能用&#xff0c;它只是提供了一种工具让你能实现这些产品。2 lucene的工作方式 lucene提供的服务实际包含两部…...