当前位置: 首页 > news >正文

【大数据学习 | Spark-SQL】Spark-SQL编程

上面的是SparkSQL的API操作。

1. 将RDD转化为DataFrame对象

DataFrame:

DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这样的数据集可以用SQL查询。

创建方式

准备数据

1 zhangsan 20 male
2 lisi 30 female
3 wangwu 35 male
4 zhaosi 40 female

toDF方式

package com.hainiu.sparkimport org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}object TestSparkSql{def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test sql")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)//环境对象包装import sqlSc.implicits._//引入环境信息val rdd = sc.textFile("data/a.txt").map(t => {val strs = t.split(" ")(strs(0).toInt, strs(1), strs(2).toInt)})//增加字段信息val df = rdd.toDF("id", "name", "age")df.show() //展示表数据df.printSchema() //展示表格字段信息}
}

使用样例类定义schema:

object TestSparkSql{def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test sql")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._val rdd = sc.textFile("data/a.txt").map(t => {val strs = t.split(" ")Student(strs(0).toInt, strs(1), strs(2).toInt)})//    val df = rdd.toDF("id", "name", "age")val df = rdd.toDF()df.show() //打印数据,以表格的形式打印数据df.printSchema() //打印表的结构信息}
}
case class Student(id:Int,name:String,age:Int)

createDataFrame方式

这种方式需要将rdd和schema信息进行合并,得出一个新的DataFrame对象

package com.hainiu.sparkimport org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}object TestSparkSqlWithCreate {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test create")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)val rdd = sc.textFile("data/a.txt").map(t => {val strs = t.split(" ")Row(strs(0).toInt, strs(1), strs(2).toInt)})
//    rdd + schemaval schema = StructType(Array(StructField("id",IntegerType),StructField("name",StringType),StructField("age",IntegerType)))val df = sqlSc.createDataFrame(rdd, schema)df.show()df.printSchema()}
}

2. SparkSQL的查询方式(推荐第二种写法)

第二个部分关于df的查询

第一种sql api的方式查询

  • 使用的方式方法的形式编程
  • 但是思想还是sql形式
  • 和rdd编程特别相似的一种写法
object TestSql {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test sql")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._val rdd = sc.textFile("data/a.txt").map(t => {val strs = t.split(" ")(strs(0).toInt, strs(1), strs(2).toInt,strs(3))})val df = rdd.toDF("id", "name", "age","gender")//select * from student where age >20//df.where("age >20")//分组聚合//df.groupby("gender").sum("age")//几个问题//聚合函数不能增加别名 聚合函数不能多次聚合  orderby不识别desc // df.groupBy("gender").agg(count("id").as("id"),sum("age").as("age")).orderBy($"age".desc) //字段标识可以是字符串,也可以是字段对象//df.orderBy($"age".desc)   //df.orderBy(col("age").desc) //df.orderBy(df("age").desc) //增加字段对象可以实现高端操作//df.select($"age".+(1)) //join问题//val df1 = sc.makeRDD(Array(//   (1,100,98),//  (2,100,95),// (3,90,92),//(4,90,93)//)).toDF("id","chinese","math")//df.join(df1,"id") //字段相同   //df.join(df1,df("id")===df1("id"))   //窗口函数//普通函数 聚合函数  窗口函数 sum|count|rowkey over (partition by gender order by age desc)//按照条件分割完毕进行数据截取//班级的前两名 每个性别年龄最高的前两个//select *,row_number() over (partition by gender order by age desc) rn from tableimport sqlSc.implicits._import org.apache.spark.sql.functions._df.withColumn("rn",row_number().over(Window.partitionBy("gender").orderBy($"age".desc))).where("rn = 1").show()}
}

第二种纯sql形式的查询

  • 首先注册表
  • 然后使用sql查询
  • 最终得出的还是dataFrame的对象
  • 其中和rdd的编程没有任何的区别,只不过现在使用sql形式进行处理了而已
package com.hainiu.sparkimport org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}object TestSparkSqlWithCreate {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test create")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)val rdd = sc.textFile("data/a.txt").map(t => {val strs = t.split(" ")Row(strs(0).toInt, strs(1), strs(2).toInt,strs(3))})
//    rdd + schemaval schema = StructType(Array(StructField("id",IntegerType),StructField("name",StringType),StructField("age",IntegerType),StructField("gender",StringType),))val df = sqlSc.createDataFrame(rdd, schema)//sql形式查询//select col from tabledf.createTempView("student")val df1 = sqlSc.sql("""|select count(1) cnt,gender from student group by gender|""".stripMargin)df1.createTempView("student1")val df2 = sqlSc.sql("""|select * from student1 where cnt>1|""".stripMargin)df2.show()df2.printSchema()}
}

相关文章:

【大数据学习 | Spark-SQL】Spark-SQL编程

上面的是SparkSQL的API操作。 1. 将RDD转化为DataFrame对象 DataFrame: DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这样的数…...

15分钟做完一个小程序,腾讯这个工具有点东西

我记得很久之前,我们都在讲什么低代码/无代码平台,这个概念很久了,但是,一直没有很好的落地,整体的效果也不算好。 自从去年 ChatGPT 这类大模型大火以来,各大科技公司也都推出了很多 AI 代码助手&#xff…...

manim动画编程(安装+入门)

文章目录 1.基本介绍2.效果展示3.安装步骤3.1安装manba软件3.2配置环境变量3.3查看是否成功3.4什么是mamba3.5创建虚拟环境3.6尝试进入虚拟环境 4.vscode操作4.1默认配置文件 5.安装ffmpeg6.安装manim软件6.vscode制作7.我的学习收获 1.基本介绍 这个manim就是一款软件&#x…...

STL算法之数值算法<stl_numeric.h>

这一节介绍的算法&#xff0c;统称为数值(numeric)算法。STL规定&#xff0c;欲使用它们&#xff0c;客户端必须包含头文件<numeric>.SGI将它们实现与<stl_numeric.h>文件中。 目录 运用实例 accumulate adjacent_difference inner_product partial_sum pow…...

Oracle如何记录登录用户IP

在运维场景中&#xff0c;在定位到某个SQL引起系统故障之后&#xff0c;想知道是哪台机器发过来的&#xff0c;方便定位源头&#xff0c;该如何解决&#xff1f; 在 Oracle 数据库中记录登录用户的 IP 地址可以通过多种方法实现。以下是几种常见的方法&#xff0c;包括使用触发…...

Python图像处理:打造平滑液化效果动画

液化动画中的强度变化是通过在每一帧中逐渐调整液化效果的强度参数来实现的。在提供的代码示例中&#xff0c;强度变化是通过一个简单的线性插值方法来控制的&#xff0c;即随着动画帧数的增加&#xff0c;液化效果的强度也逐渐增加。 def liquify_image(image, center, radius…...

构建Ceph分布式文件共享系统:手动部署指南

#作者:西门吹雪 文章目录 micro-Services-TutorialCeph分布式文件共享方案部署Ceph集群使用CephCeph在kubernetes集群中的使用 micro-Services-Tutorial 微服务最早由Martin Fowler与James Lewis于2014年共同提出&#xff0c;微服务架构风格是一种使用一套小服务来开发单个应…...

数据结构——用数组实现栈和队列

目录 用数组实现栈和队列 一、数组实现栈 1.stack类 2.测试 二、数组实现队列 1.Queue类 2.测试 查询——数组&#xff1a;数组在内存中是连续空间 增删改——链表&#xff1a;链表的增删改处理更方便一些 满足数据先进后出的特点的就是栈&#xff0c;先进先出就是队列…...

vue3typescript,shims-vue.d.ts中declare module的vue声明

webpack已经有了vue-loader这些loader了&#xff0c;为什么还需要declare module *.vue’呢&#xff1f; declare module 是为了告诉 tsc 这是一个“模块”。 如果不声明&#xff0c; IDE 里因为 tsc 类型检查&#xff0c; lint 会标红。 但vue-loader 是在 Webpack 构建阶段使…...

C/C++基础知识复习(30)

1) 什么是 C 中的 Lambda 表达式&#xff1f;它的作用是什么&#xff1f; Lambda 表达式&#xff1a; 在 C 中&#xff0c;Lambda 表达式是一种可以定义匿名函数的机制&#xff0c;可以在代码中快速创建一个内联的函数对象&#xff0c;而不需要显式地定义一个函数。Lambda 表…...

【NLP 1、人工智能与NLP简介】

人人都不看好你&#xff0c;可偏偏你最争气 —— 24.11.26 一、AI和NLP的基本介绍 1.人工智能发展流程 弱人工智能 ——> 强人工智能 ——> 超人工智能 ① 弱人工智能 人工智能算法只能在限定领域解决特定的问题 eg&#xff1a;特定场景下的文本分类、垂直领域下的对…...

网络安全事件管理

一、背景 信息化技术的迅速发展已经极大地改变了人们的生活&#xff0c;网络安全威胁也日益多元化和复杂化。传统的网络安全防护手段难以应对当前繁杂的网络安全问题&#xff0c;构建主动防御的安全整体解决方案将更有利于防范未知的网络安全威胁。 国内外的安全事件在不断增…...

Swagger记录一次生成失败

最近在接入Swagger的时候遇到一个问题&#xff0c;就是Swagger UI可以使用的&#xff0c;但是/v3/docs 这个接口的json返回的base64类型的json&#xff0c;并不是纯json&#xff0c;后来检查之后是因为springboot3里面配置了json压缩。 Beanpublic HttpMessageConverters cusHt…...

Go 语言常用工具方法总结

在 Go 语言开发中&#xff0c;常常需要进行一些常见的类型转换、字符串处理、时间处理等操作。本文将总结一些常用的工具方法&#xff0c;帮助大家提高编码效率&#xff0c;并提供必要的代码解释和注意事项&#xff08;go新人浅浅记录一下&#xff0c;以后来翻看&#x1f923;&…...

ThingsBoard规则链节点:GCP Pub/Sub 节点详解

目录 引言 1. GCP Pub/Sub 节点简介 2. 节点配置 2.1 基本配置示例 3. 使用场景 3.1 数据传输 3.2 数据分析 3.3 事件通知 3.4 任务调度 4. 实际项目中的应用 4.1 项目背景 4.2 项目需求 4.3 实现步骤 5. 总结 引言 ThingsBoard 是一个开源的物联网平台&#xff0…...

【Linux】select,poll和epoll

select&#xff0c;poll&#xff0c;epoll都是IO多路复用的机制。I/O多路复用就通过一种机制&#xff0c;可以监视多个描述符fd&#xff0c;一旦某个描述符就绪(一般是读就绪或者写就绪)&#xff0c;系统会通知有I/O事件发生了&#xff08;不能定位是哪一个&#xff09;。但sel…...

Qt程序发布及打包成exe安装包

参考:Qt之程序发布以及打包成exe安装包 目录 一、简述 Qt 项目开发完成之后,需要打包发布程序,而因为用户电脑上没有 Qt 配置环境,所以需要将 release 生成的 exe 文件和所依赖的 dll 文件复制到一个文件夹中,然后再用 Inno Setup 打包工具打包成一个 exe 安装包,就可以…...

python怎样运行js语句

1. 安装 pip install PyExecJS # 需要注意&#xff0c; 包的名称&#xff1a;PyExecJS 2. 简单使用 import execjs execjs.eval("new Date") 返回值为&#xff1a; 2018-04-04T12:53:17.759Z execjs.eval("Date.now()") 返回值为&#xff1a;152284700108…...

汽车渲染领域:Blender 和 UE5 哪款更适用?两者区别?

在汽车渲染领域&#xff0c;选择合适的工具对于实现高质量的视觉效果至关重要。Blender和UE5&#xff08;Unreal Engine 5&#xff09;作为两大主流3D软件&#xff0c;各自在渲染动画方面有着显著的差异。本文将从核心定位与用途、工作流程、渲染技术和灵活性、后期处理与合成四…...

JAVA实现将PDF转换成word文档

POM.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.…...

前端-Git

一.基本概念 Git版本控制系统时一个分布式系统&#xff0c;是用来保存工程源代码历史状态的命令行工具 简单来说Git的作用就是版本管理工具。 Git的应用场景&#xff1a;多人开发管理代码&#xff1b;异地开发&#xff0c;版本管理&#xff0c;版本回滚。 Git 的三个区域&a…...

如何分析Windows防火墙日志

Windows防火墙&#xff0c;也被称为Windows Defender Firewall&#xff0c;是一种内置的安全功能&#xff0c;可以主动监控和分析运行Windows操作系统的计算机上通过Windows防火墙的网络流量&#xff0c;主要目的是作为计算机和互联网或其他网络之间的屏障&#xff0c;使管理员…...

工作坊报名|使用 TEN 与 Azure,探索你的多模态交互新场景

GPT-4o Realtime API 发布&#xff0c;语音 AI 技术正在进入一场新的爆发。语音AI技术的实时语音和视觉互动能力将为我们带来更多全新创意和应用场景。 实时音频交互&#xff1a; 允许应用程序实时接收并响应语音和文本输入。自然语音生成&#xff1a; 减少 AI 技术生成的语音…...

学习笔记041——Elastic Search的学习与使用以及SpringBoot整合

文章目录 1、Elastic Search介绍1.1、ES 的数据结构1.2、ES 为什么查询快1.3、CRUD 2、Spring Boot 整合 ES 1、Elastic Search介绍 ‌Elasticsearch‌是一个分布式的、基于RESTful API的搜索和分析引擎&#xff0c;广泛用于大规模数据存储和快速检索。它最初由Shay Banon于20…...

R安装rgdal报错 解决办法

尝试了网上很多办法&#xff0c;不知道哪一步解决了&#xff0c;记录一下所有步骤&#xff1a; 1. 尝试github安装 options(repos c(CRAN "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))install.packages("devtools")library(devtools)devtools::in…...

【智能制造-46】人机工程(工厂自动化)

工作空间设计 设备布局规划 根据人体测量学数据&#xff0c;合理安排自动化设备、生产线和工作区域的布局。例如&#xff0c;考虑工人的操作空间和活动范围&#xff0c;确保他们能够舒适地接近和操作设备。在汽车装配车间&#xff0c;机器人和工人的工作区域应划分明确&#…...

C#笔记(5)

一、winform项目与窗体控件 1、部分类的使用 好处&#xff1a;让自动生成的代码后置&#xff0c;我们编写程序的代码显得更加简洁 特点&#xff1a;在最后编译的时候&#xff0c;仍然编译成一个窗体类。 窗体和控件的基本使用 3、Event事件&#xff08;委托--》事件&#…...

【软件国产化】| Windows和Linux下文件名后缀是否区分大小写

今天在开发过程中遇到了个软件在Linux系统和Windows系统下功能表现不一致的bug&#xff0c;具体表现为&#xff1a; 插入一张图片&#xff08;A文件夹中的001.jpg&#xff09;&#xff0c;然后使用“图片替换”功能&#xff0c;用B文件夹中的图片&#xff08;B文件夹中的001.JP…...

讨论JAVA、JVM与Spring

Q1: 作为一个JAVA开发人员&#xff0c;对于jvm肯定不陌生&#xff0c;但很多人对它不陌生也仅止于概念上&#xff0c;而且对概念也是模糊不清的&#xff0c;但jvm实际是java程序运行在其中的实际存在的环境&#xff0c;对它的理解应该要是具象化的。 我们还是从一项技术产生的…...

【04】MySQL数据库和数据表的基本操作详解与实例

文章目录 一、连接MySQL服务器二、数据库的基本操作2.1数据库的基本操作1. 创建数据库2. 选择数据库3. 删除数据库4.查询所有数据库5.修改数据库的字符集 2.2 数据表的基本操作1. 创建数据表2. 查看数据表结构3. 删除数据表4. 修改数据表5. 插入数据6. 查询数据7. 更新数据8. 删…...

php wordpress教学/女教师遭网课入侵视频

http://www.sohu.com/a/311437451_267106 &#xff08;江南水乡&#xff09; 编辑 讨论1中国人所说的“水乡”&#xff0c;一般是指“江南水乡”。中国的江南&#xff0c;大体上是指浙江&#xff0c;上海&#xff0c;安徽&#xff0c;江西和江苏长江以南地区&#xff0c;主要城…...

云南人事考试网官网/如何做网站seo排名优化

题目大意&#xff1a;多组数据&#xff0c;每组数据给一张图&#xff0c;多组询问&#xff0c;每个询问给一个点集&#xff0c;要求删除一个点&#xff0c;使得至少点集中的两个点互不连通&#xff0c;输出方案数 题解&#xff1a;圆方树&#xff0c;发现使得两个点不连通的方案…...

网站建设方案书网络部署方案/关键词优化骗局

快递包装捐赠系统 此项目为Android课程设计&#xff0c;用户使用Android端&#xff0c;SpringBoot是为管理员使用的&#xff0c;用来管理用户&#xff0c;商品的信息。 后台管理访问地址&#xff1a;点我访问 管理员登录&#xff1a; 账号&#xff1a;root密码&#xff1a;…...

优秀高端网站建设报价/atp最新排名

1.提升内聚性 2.降低耦合度 3.切分关注面 4.模块化系统性关注面 5.缩小类和函数的尺寸 6.选用更好的命名&#xff0c;缩减冗余的注释 转载于:https://www.cnblogs.com/DjangoBlog/p/5445309.html...

建筑工程网 装修/关键词查询优化

剑指第二版第7题重建二叉树 这算是一道老题目了,通过前续遍历和中序遍历创建一个二叉树,我记得还有一道反序列二叉树的题,只给了三种dfs中的一种,区别还是很大的,没有什么可以说的了,找规律就可以了. class Solution {HashMap<Integer, Integer> map new HashMap<&…...

必须做网站等级保护/seo搜索引擎优化

CBuilder 11.1.5 Alexandria 设计 RAD Studio 的 C 版本带有用于高性能原生 Windows 应用程序的屡获殊荣的 VCL 框架和用于跨平台 UI 的强大的 FireMonkey (FMX) 框架。C 的可视化开发从未如此简单和快捷——最重要的是&#xff0c;您的设计和代码将始终保持同步。 使用 VCL 快…...