ADAM优化算法与学习率调度器:深度学习中的关键工具
深度学习模型的训练效果离不开优化算法和学习率的选择。ADAM(Adaptive Moment Estimation)作为深度学习领域中广泛应用的优化算法之一,以其高效性和鲁棒性成为许多任务的默认选择。而学习率调度器则是优化算法的“助推器”,帮助训练过程达到更好的收敛性。本文将深入剖析ADAM算法的核心原理、优劣势以及常见的学习率调度方法,提供实用性强的技术指导。
一、优化算法基础与ADAM算法简介
1.1 优化算法在深度学习中的作用
在深度学习中,优化算法的目标是通过不断调整模型的参数(如权重和偏置),使得损失函数的值趋于最小化,从而提升模型的表现能力。常见的优化算法包括:
- 梯度下降算法(GD):基于全部训练数据计算梯度。
- 随机梯度下降算法(SGD):每次迭代仅使用一个数据点计算梯度。
- 动量梯度下降(Momentum):加入动量项以加速收敛。
- RMSProp:使用指数加权移动平均对梯度平方进行调整。
而ADAM则是对这些方法的改进与综合。
1.2 ADAM算法的核心思想
ADAM结合了Momentum和RMSProp的优点,通过一阶和二阶矩的自适应估计来动态调整学习率,从而使优化过程更加高效和鲁棒。其核心步骤包括以下几点:
-
一阶矩估计(动量项): 对梯度取指数加权平均,记录梯度的平均方向,缓解震荡问题。
-
二阶矩估计(平方梯度): 记录梯度平方的指数加权平均,用于自适应调整学习率,避免梯度过大或过小。
-
偏差修正: 对一阶和二阶矩进行偏差校正,消除初始阶段的估计偏差。
ADAM的更新公式如下:

其中:
- mt:梯度的一阶矩估计。
- vt:梯度的二阶矩估计。
- α:学习率。
- β1,β2:动量超参数,分别控制一阶和二阶矩的更新速率。
二、ADAM算法的优点与局限性
2.1 ADAM的优点
-
自适应学习率: ADAM会根据每个参数的历史梯度动态调整学习率,避免了手动调参的麻烦。
-
快速收敛: 在早期训练阶段,ADAM表现出较快的收敛速度,适合处理大型数据集和高维参数空间。
-
鲁棒性强: 能够在不稳定的损失函数曲面上表现良好,适用于稀疏梯度的情况(如NLP任务)。
-
支持非凸优化: ADAM对非凸优化问题有较好的适应能力,适合深度学习的复杂模型。
2.2 ADAM的局限性
-
泛化性能欠佳: 尽管ADAM在训练集上表现良好,但可能导致模型在验证集或测试集上过拟合。
-
学习率依赖问题: 尽管ADAM是自适应的,但初始学习率的选择仍然会显著影响最终性能。
-
未必全局收敛: 在某些特定情况下,ADAM可能无法收敛到全局最优解。
针对这些局限性,许多变种算法被提出,例如AMSGrad和AdaBound,它们通过改进二阶矩估计或收敛性约束来缓解问题。
2.3 ADAM算法的使用实例
我们以一个简单的二分类任务(如MNIST数据集的0和1分类)为例,展示如何在PyTorch中使用ADAM算法完成训练。
数据准备与模型定义
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])# 加载MNIST数据集(仅选取数字0和1)
train_data = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_data.data = train_data.data[(train_data.targets == 0) | (train_data.targets == 1)]
train_data.targets = train_data.targets[(train_data.targets == 0) | (train_data.targets == 1)]train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)# 简单的全连接网络
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc = nn.Sequential(nn.Flatten(),nn.Linear(28*28, 128),nn.ReLU(),nn.Linear(128, 1),nn.Sigmoid())def forward(self, x):return self.fc(x)model = SimpleNN()
使用ADAM优化算法
# 定义损失函数和ADAM优化器
criterion = nn.BCELoss() # 二分类交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)# 模型训练
for epoch in range(10): # 训练10个epochfor inputs, targets in train_loader:# 将目标转换为floattargets = targets.float().view(-1, 1)# 前向传播outputs = model(inputs)loss = criterion(outputs, targets)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
三、学习率调度器的作用与常见策略
3.1 学习率对训练的影响
学习率决定了模型参数在每次迭代中更新的步长:
- 学习率过大可能导致参数震荡甚至无法收敛。
- 学习率过小则可能导致收敛速度慢,甚至陷入局部最优。
学习率调度器通过动态调整学习率,使训练过程既能快速收敛,又能在后期稳定优化。
3.2 常见的学习率调度方法
固定衰减(Step Decay): 每隔一定的迭代次数,将学习率按固定比例缩小。例如:
![]()
-
优点:简单直观,适合收敛较快的任务。
指数衰减(Exponential Decay): 学习率随时间指数级减少:
![]()
-
能在训练后期实现更平滑的更新。
余弦退火(Cosine Annealing): 学习率按照余弦函数变化:

-
适合周期性训练任务,例如图像分类。
学习率重启(Warm Restarts): 在余弦退火基础上,每隔一段时间重置学习率,帮助模型跳出局部最优。
基于性能的调度: 动态监控验证集的损失或准确率,当性能指标不再提升时降低学习率。
线性热身(Linear Warmup): 在训练初期,逐渐增大学习率到目标值,适合大批量训练场景。
四、ADAM与学习率调度的结合实践
在实际训练中,ADAM算法与学习率调度器的结合是提升模型效果的重要手段。以下是一些结合实践的建议:
4.1 配合学习率调度器
-
训练前期快速收敛: 使用线性热身结合ADAM,使模型快速适应优化过程。
-
中后期精细调整: 在验证性能停滞时,引入余弦退火或性能监控调度器,降低学习率以细化收敛。
4.2 不同任务的参数调整
- 对于稀疏梯度任务,如文本分类,增大β2值(如0.99)可以稳定训练。
- 对于图像生成任务,适当减小ϵ,可以提高优化精度。
五、总结
ADAM算法作为深度学习优化中的重要工具,以其高效性和自适应性深受欢迎,而学习率调度器则通过动态调整学习率进一步提高了优化效果。两者的结合为解决大规模深度学习任务提供了强大支持。然而,在实际应用中,不同任务对优化算法和学习率调度的需求各不相同,合理选择和调优是提升模型性能的关键。
通过深入理解ADAM的原理与局限性,并结合学习率调度的多种策略,开发者能够更好地应对训练过程中的挑战,实现模型的高效优化。
相关文章:
ADAM优化算法与学习率调度器:深度学习中的关键工具
深度学习模型的训练效果离不开优化算法和学习率的选择。ADAM(Adaptive Moment Estimation)作为深度学习领域中广泛应用的优化算法之一,以其高效性和鲁棒性成为许多任务的默认选择。而学习率调度器则是优化算法的“助推器”,帮助训…...
岛屿数量C++11新特性
每日一题 200. 岛屿数量 class Solution {//使用深度的优先搜索来搜索岛屿图//遍历整个图片 当char数组的值为1时开始从这个点开始往外扩散搜索//注意处理边界 图不是正方形 public:int ans;int d[4][2] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};int N;int M;void dfs(vector<…...
Git 快速入门:全面了解与安装步骤
Git 快速入门:全面了解与安装步骤 一、关于Git 1.1 简介 Git 是一个开源的分布式版本控制系统,由 Linus Torvalds 于 2005 年创建,最初是为了更好地管理 Linux 内核开发而设计。 Git用于跟踪计算机文件的变化,特别是源代码文件…...
基于域自适应的双光融合
目录 引言DAF-Net编码器-解码器分支编码器部分融合层解码器部分 域自适应层概述多核最大均值差异(MK-MMD)第一阶段:编码器-解码器分支训练训练过程损失函数 第二阶段:融合层训练训练过程损失函数 实验与结果总结 文章声明…...
迭代器模式 (Iterator Pattern)
文章目录 迭代器模式 (Iterator Pattern)原理优点缺点示例代码场景描述1. 定义迭代器接口2. 定义集合接口3. 实现具体集合类4. 客户端代码输出结果 UML 类图使用场景优化与扩展小结 迭代器模式 (Iterator Pattern) 迭代器模式是一种 行为型设计模式,用于顺序访问集…...
039集——渐变色之:CAD中画彩虹()(CAD—C#二次开发入门)
(来左边儿 跟我一起画个龙,在你右边儿 画一道彩虹 ~~~~~~~~~~~ ) 效果如下: namespace AcTools {public class Class1{public Wform.Timer timer;//定时器需建在类下面public static DateTime startTime;[CommandM…...
如何将 GitHub 私有仓库(private)转换为公共仓库(public)
文章目录 如何将 GitHub 私有仓库转换为公共仓库步骤 1: 登录 GitHub步骤 2: 导航到目标仓库步骤 3: 访问仓库设置步骤 4: 更改仓库可见性步骤 5: 确认更改步骤 6: 验证更改注意事项 如何将 GitHub 私有仓库转换为公共仓库 在软件开发领域,GitHub 是一个广受欢迎的…...
C++11 右值引用
目录 左值 右值 左值引用与右值引用比较 左值引用总结: 右值引用总结: 左值引用的使用场景: 引用传参和做返回值都可以提高效率(减少拷贝) 左值引用的短板: 右值引用和移动语义解决上述问题: 下面就是有移动…...
WPS表格学习计划与策略
一、学习目标 掌握WPS表格的基本操作:包括新建、打开、保存工作簿,单元格的编辑与格式化,数据的输入与验证等。熟练运用WPS表格的数据处理功能:包括数据排序、筛选、分类汇总,以及使用公式和函数进行计算和分析。学会制作图表与数据可视化:掌握不同类型图表(如柱状图、折…...
Android 引入 proto 项目及使用方法
Proto(Protocol Buffers)是Google开发的一种语言无关、平台无关的序列化结构数据的方法,它类似于JSON和XML,但相对于XML而言更小,相对于JSON而言解析更快,支持多语言。以下是将Proto引入Android项目的方法及…...
VSOMEIP主要流程的时序
请求服务: client应用: application_impl::request_service routing_manager_client::request_service (老版本是routing_manager_proxy) routing_manager_client::send_request_services protocol::request_service_command its_command; // 创建…...
右值引用和移动语义:
C 右值引用和移动语义详解 在 C 的发展历程中,右值引用和移动语义的引入带来了显著的性能提升和编程灵活性。本文将深入探讨右值引用和移动语义的概念、用法以及重要性。 一、引言 C 作为一门高效的编程语言,一直在不断演进以满足现代软件编程的需求。…...
经纬高LLA转地心地固ECEF坐标,公式,代码
经纬高转地心地固的目的 坐标系转换是gis或者slam系统常见操作。GNSS获取的一般是经纬高,经纬高在slam系统里无法应用,slam系统一般是xyz互相垂直的笛卡尔坐标系,所以需要把GNSS的经纬高转到直角坐标系地心地固ECEF或者高斯投影GKP。 划重点…...
VUE前端实现天爱滑块验证码--详细教程
第一步: Git地址:tianai-captcha-demo: 滑块验证码demo 找到目录 src/main/resources/static,拷贝 static 并改名为 tac 即可。 第二步: 将改为 tac 的文件,放进项目根目录中,如下图: 第三步࿱…...
【链表】【删除节点】【刷题笔记】【灵神题单】
237.删除链表的节点 链表删除节点的本质是不用删除,只需要操作指针,跳过需要删除的节点,指向下下一个节点即可! 删除某个节点,但是不知道这个节点的前一个节点,也不知道头节点!摘自力扣评论区…...
springboot339javaweb的新能源充电系统pf(论文+源码)_kaic
毕 业 设 计(论 文) 题目:新能源充电系统的设计与实现 摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解…...
【嵌入式——QT】QT制作安装包
第一步 QT程序写好之后,编译release版本 第二步 拿到release生成的.exe文件 第三步 新建文件夹deploy 第四步 将.exe文件复制到deploy目录下 第五步 在该目录下输入cmd指令,回车 第六步 在打开的命令窗口下输入 windeployqt TegNetCom_1.0.…...
python的文件操作练习
文件操作:成绩统计 有一个文件grades.txt,文件内容是每行一个学生的成绩(格式:姓名,成绩)。要求: 读取文件内容,统计所有学生的平均成绩; 将不及格(<60分)…...
jQuery九宫格抽奖,php处理抽奖信息
功能介绍 jQuery九宫格抽奖是一种基于jQuery库的前端抽奖效果。通过九宫格的形式展示抽奖项,用户点击抽奖按钮后,九宫格开始旋转,最终停在一个随机位置上,此位置对应的抽奖项为用户的中奖结果。 本文实现九宫格的步骤为…...
2024年一级建造师考试成绩,即将公布!
一级建造师考试成绩一般在考试结束后3个月左右的时间公布! 根据官方通知,重庆、江苏、青海、江西、云南、湖南、福建、北京、山西、黑龙江等地在今年一建报名通知里提到:2024年一级建造师考试成绩预计于2024年12月上旬公布。考生可在这个时间…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
