【论文阅读】 Learning to Upsample by Learning to Sample
论文结构目录
- 一、之前的上采样器
- 二、DySample概述
- 三、不同上采样器比较
- 四、整体架构
- 五、设计过程
- (1)初步设计
- (2)第一次修改
- (3)第二次修改
- (4)第三次修改
- 六、DySample四种变体
- 七、复杂性分析
- 八、定性可视化
- 九、对比实验分析
- 十、DySample代码分析

论文地址:Liu_Learning_to_Upsample_by_Learning_to_Sample_ICCV_2023_paper.pdf
代码地址:https://github.com/tiny-smart/dysample.git
一、之前的上采样器
随着动态网络的普及,一些动态上采样器在几个任务上显示出巨大潜力。CARAFE通过动态卷积生成内容感知上采样核来对特征进行上采样。后续工作FADE和SAPA提出将高分辨率引导特征和低分辨率输入特征结合起来生成动态核,以便上采样过程能够受到更高分辨率结构的引导。这些动态上采样器通常结构复杂,推理时间成本高,特别是对于FADE和SAPA,高分辨率引导特征引入了更多的计算工作量,并缩小了它们的应用范围。
二、DySample概述
DySample是一种快速、有效且通用的动态上采样器,其主要概念是从点采样的角度来设计上采样过程,而不是传统的基于内核的动态上采样方法。DySample通过生成上采样位置而非内核,显著减少了计算资源的消耗,并且不需要定制的CUDA包。与其他动态上采样器相比,DySample在延迟(latency)、训练内存(memory)、训练时间(training time)、浮点运算次数(GFLOPs)和参数量(parameters)等方面表现出更高的效率。在本文测试DySample上采样模块的过程中,首先从一个简单的实现开始,然后通过不断调整公式和参数等逐步改进其性能。
三、不同上采样器比较
- 该图是对不同上采样器的性能、推理速度和
GFLOPs进行比较。 - 圆圈大小表示
GFLOPs成本。 通过将大小为256×120×120的特征图进行×2 上采样来测试推理时间。 - 在大型室内场景
ADE20K数据集上使用SegFormer-B1模型。 - 测试平均交并比(
mIoU)性能和额外增加的GFLOPs。
四、整体架构
与近期基于内核的上采样器不同,我们将上采样的本质理解为点重采样。在DySample中,有着基于动态上采样和模块设计的采样过程。其中输入特征X 、上采样特征X‘ 、生成偏移量O,原始采样网络G,采样集S。

- (a)图:采样集
S由采样点生成器生成,通过网格采样函数对输入特征进行重新采样。
- (b)图:采样集
S=生成偏移量O+原始采样网络G。 上框表示具有静态范围因子的版本,其中偏移量通过线性层生成。下框描述具有动态范围因子的版本,其中先生成一个范围因子,然后用它来调制偏移量。σ表示Sigmoid函数。
五、设计过程
(1)初步设计
- 变量注释:输入特征
X、上采样特征X‘、生成偏移量O,原始网格G,采样集S
X ′ = grid_sample ( X , S ) . (1) X' = \text{grid\_sample}(X, S).\tag{1} X′=grid_sample(X,S).(1)
O = linear ( X ) , (2) O = \text{linear}(X),\tag{2} O=linear(X),(2)
S = G + O , (3) S = G + O,\tag{3} S=G+O,(3)
- 目标检测:
Faster R-CNN(DySample) : 37.9%的AP,Faster R-CNN(CARAFE):38.6%的AP。 - 语义分割:
SegFormer-B1(DySample) 获得了41.9%的mIoU,SegFormer-B1(CARAFE)
42.8%的mIoU。
(2)第一次修改
- 点和彩色掩码分别表示初始采样位置和偏移范围;
- 本次示例,我们考虑采样四个点。

- (a)在
Nearest Initialization的情况下,四个偏移量共享相同的初始位置,这会导致初始采样位置分布不均匀; - (b)在
Bilinear Initialization的情况下,我们将初始位置分开,使他们的初始采样位置分布均匀。
(3)第二次修改
我们发现,当(b)在没有偏移调制的情况下,偏移范围通常会重叠,所以在(c)中,我们局部约束偏移范围以减少重叠。

我们重写公式(2),通过不断实验确定静态范围因子为0.25时DySample达到最优效果
O = 0.25 × linear ( X ) (4) O = 0.25 \times \text{linear}(X) \tag{4} O=0.25×linear(X)(4)
(4)第三次修改
然而,乘以静态范围因子是重叠问题的一种软解法,这种方法无法完全解决问题。

最终我们引入动态范围因子,重写公式(4),并且通过不断实验确定分组卷积个数为g=4时DySample达到最优效果。
O = 0.5 ⋅ sigmoid ( linear 1 ( X ) ) ⋅ linear 2 ( X ) (5) O = 0.5 \cdot \text{sigmoid}(\text{linear}_1(X)) \cdot \text{linear}_2(X) \tag{5} O=0.5⋅sigmoid(linear1(X))⋅linear2(X)(5)
通过第三次修改,DySample应用在Faster R-CNN 和SegFormer-B1 的效果超过CARAFE。
六、DySample四种变体
DySample系列。根据范围因子的形式(静态/动态)和偏移生成样式(LP/PL),我们研究了四种变体:
DySample:具有静态范围因子的LP风格;DySample+:具有动态范围因子的LP风格;DySample-S:具有静态范围因子的PL风格;DySample-S+:具有动态范围因子的PL风格。
其中LP和PL即采样点生成器(Sampling Point Generator)中线性层和像素重排层的顺序:

七、复杂性分析
从图中可以就看出,DySample在延迟(latency)、训练内存(memory)、训练时间(training time)、浮点运算次数(GFLOPs)和参数量(parameters)等方面表现出更高的效率。
需要注意的是:
- 虽然
LP所需的参数比PL多,但前者更灵活,内存占用更小,推理速度更快; S版本在参数和GFLOPs方面的成本更低,但内存占用和延迟更大,因为PL需要额外的存储。+版本也增加了一些计算量。
八、定性可视化

九、对比实验分析
此处仅展示目标检测领域,该实验使用Faster R-CNN在MSCOCO数据集上进行对比实验
可以看出DySample+版本在Backbone为R50和R101时均保持最优检测性能
十、DySample代码分析
上述代码就是公式(5)的具体实现
O = 0.5 ⋅ sigmoid ( linear 1 ( X ) ) ⋅ linear 2 ( X ) (5) O = 0.5 \cdot \text{sigmoid}(\text{linear}_1(X)) \cdot \text{linear}_2(X) \tag{5} O=0.5⋅sigmoid(linear1(X))⋅linear2(X)(5)

style参数定义了上采样的风格(LP/PL)groups参数用于分组卷积g的个数dyscope参数是用于确定是否使用动态范围因子(+)- 此代码代表默认的第一种
DySample
在Ultralytics封装的YOLO系列中,DySample部署模块时的task.py如下图所示

相关文章:
【论文阅读】 Learning to Upsample by Learning to Sample
论文结构目录 一、之前的上采样器二、DySample概述三、不同上采样器比较四、整体架构五、设计过程(1)初步设计(2)第一次修改(3)第二次修改(4)第三次修改 六、DySample四种变体七、复…...
堆排序(含证明)
引言 前面我们讲过堆的基本操作的实现,现在给定一个int类型的数组,里面存放的数据是无序的,我们如何利用堆的思想来实现数组内数据的升序排列或降序排列呢? 通过前面讲到的堆的实现,我们可以想到,我们再开…...
蓝桥杯模拟题不知名题目
题目:p是一个质数,但p是n的约数。将p称为是n的质因数。求2024最大质因数。 #include<iostream> #include<algorithm> using namespace std; bool fun(int x) {for(int i 2 ; i * i < x ; i){if(x % i 0)return false;}return true; } int main() …...
C#中的工厂模式
在C#中,工厂模式(Factory Pattern) 是一种常见的设计模式,它属于创建型模式,主要用于定义一个用于创建对象的接口,让子类决定实例化哪一个类。通过使用工厂模式,客户端代码不需要直接实例化具体…...
深度学习与持续学习:人工智能的未来与研究方向
文章目录 1. 持续学习与深度学习1.1 深度学习的局限1.2 持续学习的定义 2. 目标与心智2.1 奖励假说2.2 心智的构成 3. 对研究方法的建议3.1 日常写作记录3.2 中立对待流行趋势 1. 持续学习与深度学习 1.1 深度学习的局限 深度学习注重“瞬时学习”,如ChatGPT虽在语…...
OGRE 3D----4. OGRE和QML共享opengl上下文
在现代图形应用开发中,OGRE(Object-Oriented Graphics Rendering Engine)和QML(Qt Modeling Language)都是非常流行的工具。OGRE提供了强大的3D渲染能力,而QML则用于构建灵活的用户界面。在某些应用场景中,我们需要在同一个应用程序中同时使用OGRE和QML,并且共享OpenGL…...
【Umi】常用配置
具体见:alias 1. 基础配置 1)配置别名alias 2)配置sourcemap devtool 配置项 3)添加hash 4)图片转base64 inlineLimit 配置项 5)设置JS压缩方式 jsMinifier (webpack) 、jsMinifierOptions 配置项 6)设置umi插件 plugins 配置项 7)设置打包后资源导入的路…...
Windows加固脚本
echo off REM 清屏 cls title 安全策略设置批处理 color f0 echo **************************************** echo write by afei echo https://www.jianshu.com/u/ea4c85fbe8c7 echo **************************************** pause cls color 3f echo ********************…...
玩游戏常常出现vc++runtime library error R6025 这是什么意思,该怎么解决?
当玩游戏时常常出现“vc runtime library error R6025”错误,这通常表明微软C开发运行库组件存在问题。以下是对该错误及其解决方法的详细解释: 错误含义 “vc runtime library error R6025”是一个与Visual C运行时库相关的错误,该错误表明…...
AGX orin下电控制
AGX orin下电主要有两种,一种通过软件控制下电,另一种通过按键强制关机。下电流程和电脑关机流程类似。 AGX orin核心板与扩展板 AGX orin核心板由英伟达生产,不提供原理图,通过下图所示连接器与扩展板连接。 AGX orin扩展板&am…...
flutter 报错 error: unable to find git in your path.
项目issue:WIndows: "Unable to find git in your PATH." if terminal is not in admin mode Issue #123995 flutter/flutter 解决办法, 方法一:每次想要运行flutter的时候以管理员方式运行,比如以管理方式运行vsco…...
芯科科技率先支持Matter 1.4,推动智能家居迈向新高度
Matter 1.4引入核心增强功能、支持新设备类型,持续推进智能家居互联互通 近日,连接标准联盟(Connectivity Standard Alliance,CSA)发布了Matter 1.4标准版本。作为连接标准联盟的重要成员之一,以及Matter标…...
C语言数据相关知识:静态数据、越界与溢出
1、静态数组 在 C 语言中,数组一旦被定义后,占用的内存空间就是固定的,容量就是不可改变的,既不能在任何位置插入元素,也不能在任何位置删除元素,只能读取和修改元素,我们将这样的数组称为静态…...
文本分析之余弦相似度
余弦相似度(Cosine Similarity)是一种用于衡量两个非零向量之间相似度的指标,尤其常用于文本分析和自然语言处理领域。其核心思想是通过计算两个向量的夹角余弦值来评估它们的相似性。具体而言,余弦相似度的值范围从-1到1,其中1表示两个向量完全相同,0表示它们之间没有相…...
【VUE3】【Naive UI】<n-button> 标签
【VUE3】【Naive UI】<n-button> 标签 **type**- 定义按钮的类型,这会影响按钮的颜色和样式。**size**- 设置按钮的大小。**disabled**- 布尔值,控制按钮是否处于禁用状态。**loading**- 布尔值,表示按钮是否处于加载状…...
css使盒子在屏幕的地点固定
在 CSS 中,要将一个元素固定在页面的某个位置,可以使用 position: fixed 属性。以下是详细的代码示例和中文解释: <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta n…...
Transformers快速入门代码解析(六):注意力机制——Transformer Encoder:执行顺序解析
Transformer Encoder:执行顺序解析 引言执行顺序解析1. 设置模型检查点和分词器2. 输入预处理操作说明: 3. 加载模型配置configconfig 包含的主要参数常见配置(BERT-base) 4. 初始化 TransformerEncoder5. Transformer Encoder 的…...
图像小波去噪与总变分去噪详解与Python实现
目录 图像小波去噪与总变分去噪详解与实现1. 基础概念1.1 噪声类型及去噪问题定义1.2 小波去噪算法基础1.3 总变分去噪算法基础2. 小波去噪算法2.1 理论介绍2.2 Python实现及代码详解2.3 案例分析3. 总变分去噪算法3.1 理论介绍3.2 Python实现及代码详解3.3 案例分析4. 两种算法…...
【深度学习基础】预备知识 | 微积分
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重…...
CTF-PWN glibc源码阅读[1]: 寻找libc中堆结构的定义(2.31-0ubuntu9.16)
源代码在这里下载 来到malloc/malloc.c 在980行发现这段代码 // 定义最大 mmap 值为 -4 #define M_MMAP_MAX -4// 如果没有定义 DEFAULT_MMAP_MAX,则将其定义为 65536 #ifndef DEFAULT_MMAP_MAX #define DEFAULT_MMAP_MAX (65536) #endif// 引…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
