网络药理学之薛定谔Schrödinge Maestro:6、分子对接(Glide、Ligand docking)和可视化
本人是
win11,薛定谔版本是12.9。
官网:https://www.schrodinger.com/
本篇文章的示例大分子蛋白PDB ID为4KNN,小分子配体的MOL ID为MOL004004。
本文部分图源来自知乎https://zhuanlan.zhihu.com/p/416698194,推荐为原作者贡献阅读量捏。
1.Ligand docking讲解(可跳过)
在右上角的操作区的tasks搜索Ligand docking,打开面板如下:
1.1.Ligands

1.2.Settings

HTVS:高通量筛选,一般用来筛选很多个小分子SP:和HTVS算法原理差不多,但是会降低采样的彻底性。XP:开始和SP是一样的,但是采样更严格,运行时间比SP长。对于形状互补更严格,所以一般用于排除假阳性。但是需要额外的license
补充:如果你需要虚拟筛选一个很大的数据库,建议先用
SP,按照打分排序,取前10%-30%,用XP重新对接。并勾选write xp descriptor information。
还有一个virtual screening模块,相当于先用HTVS、再sp、再xp。
1.3.Output

1.4.job settings

2.Ligand docking实战
在右上角的操作区的tasks搜索Ligand docking,打开面板如下:
默认从文件中加载glide-grid1.zip并勾选display receptor 和show grid boxes。
选择配体:use ligands from files,并加载ligprep_1-out.maegz。最后直接run即可。

对接完成后会得到glide-dock_SP_1_pv.maegz文件,且左侧工作区会生成多个名字和小分子配体名字一样的条目,实际上对接后的构象,在我这是MOL004004。
我们点击操作区的table,显示如下,只用看docking score这一列。

可以看到,最好的结果是-5.559,只能说有作用力,但对接得不算特别好。
3.可视化
待更ing
相关文章:
网络药理学之薛定谔Schrödinge Maestro:6、分子对接(Glide、Ligand docking)和可视化
本人是win11,薛定谔版本是12.9。 官网:https://www.schrodinger.com/ 本篇文章的示例大分子蛋白PDB ID为4KNN,小分子配体的MOL ID为MOL004004。 本文部分图源来自知乎https://zhuanlan.zhihu.com/p/416698194,推荐为原作者贡献阅读…...
已解决ModuleNotFoundError: No module named ‘selenium‘
1. 错误提示 ModuleNotFoundError: No module named selenium,这意味着你试图导入一个名为 selenium 的模块,但Python找不到这个模块 2. 解决方案 安装缺失的模块: 如果你确定模块名称正确但仍然收到这个错误,那么可能是你没有安装这个模块…...
【Maven】依赖冲突如何解决?
准备工作 1、创建一个空工程 maven_dependency_conflict_demo,在 maven_dependency_conflict_demo 创建不同的 Maven 工程模块,用于演示本文的一些点。 什么是依赖冲突? 当引入同一个依赖的多个不同版本时,就会发生依赖冲突。…...
什么是EMS
EMS是能量管理系统(Energy Management System)的缩写,是一种集成的技术解决方案,旨在帮助企业和组织更有效地管理和优化其能源使用。EMS通过收集、分析和报告能源数据来识别节能机会,并提供工具以实施改进措施。 主要…...
26页PDF | 数据中台能力框架及评估体系解读(限免下载)
一、前言 这份报告详细解读了数据中台的发展历程、核心概念、能力框架及成熟度评估体系。它从阿里巴巴的“大中台,小前台”战略出发,探讨了数据中台如何通过整合企业内部的数据资源和能力,加速业务迭代、降低成本,并推动业务增长…...
【Vue3】【Naive UI】< a >标签
【Vue3】【Naive UI】< a >标签 超链接及相关属性其他属性 【VUE3】【Naive UI】<NCard> 标签 【VUE3】【Naive UI】<n-button> 标签 【VUE3】【Naive UI】<a> 标签 <a> 标签HTML中的一个锚&…...
分页查询日期格式不对
方式一:在属性上加入注解,对日期进行格式化 方式二:在 WebMvcConfiguration 中扩展Spring MVC的消息转换器,统一对日期类型进行格式化处理 /*** 统一转换处理扩展spring mvc* 后端返回前端的进行统一转化处理* param converters*/Overrideprotected voi…...
DAY140权限提升-Linux系统权限提升篇VulnhubPATH变量NFS服务Cron任务配合SUID
一、演示案例-Linux系统提权-Web&普通用户-SUID-NFS安全 NFS是一种基于TCP/IP 传输的网络文件系统协议,通过使用NFS协议,客户机可以像访问本地目录一样访问远程服务器中的共享资源。 https://www.virtualbox.org/wiki/Downloads https://www.vuln…...
HTTPS 的应用数据是如何保证完整性的?
在 HTTPS 中,确保 应用数据的完整性 是通过以下几个关键机制来实现的: 消息认证码(MAC):用于确保数据在传输过程中未被篡改。加密:通过加密数据防止数据被窃取,并与 MAC 配合使用,确…...
Unity ShaderLab 实现3D物体描边
实现思路: 给物体添加第二个材质球,在shader的顶点着色器中使顶点的位置变大,然后在片元着色器中输出描边颜色。 shader Graph实现如下: ShaderLab实现如下: Shader "Custom/Outline" {Properties{[HDR]_…...
SQL进阶——C++与SQL进阶实践
在C开发中,SQL数据库的操作是开发者常见的任务之一。虽然前面我们已经介绍了如何在C中通过数据库连接执行基本的SQL查询,但在实际项目中,我们通常需要更加复杂和高效的数据库操作。存储过程与函数的调用、复杂SQL查询的编写、以及动态构造SQL…...
AIGC--------AIGC在医疗健康领域的潜力
AIGC在医疗健康领域的潜力 引言 AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是一种通过深度学习和自然语言处理(NLP)等技术生成内容的方式。近年来,AIGC在医疗健康领域展现出了极…...
node.js中实现MySQL的增量备份
有时候,我们需要对生产库进行备份,不要求实时性很高,大概每天一次就行,为性能考虑,只备份最新更改内容,即增量备份即可,这种场景下对DB的设计和备份语句有所要求。 首先要求按源表各字段定义目标…...
Java线程池提交任务流程底层源码与源码解析
前言 嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的…...
新型大语言模型的预训练与后训练范式,Meta的Llama 3.1语言模型
前言:大型语言模型(LLMs)的发展历程可以说是非常长,从早期的GPT模型一路走到了今天这些复杂的、公开权重的大型语言模型。最初,LLM的训练过程只关注预训练,但后来逐步扩展到了包括预训练和后训练在内的完整…...
硬菜3道+馒头
硬菜3道 1、可乐鸡翅 》鸡翅滑刀酱油耗油胡椒粉盐》 搅拌腌制3-5分钟 》油锅,直到2面煎黄 》倒入可乐,到大火收汁,出锅 2、洋葱牛肉 》冻牛肉切薄酱油耗油胡椒粉盐 》手指摇匀 》加入生粉水,继续摇匀》直到粘稠 》油锅牛肉炒半熟&…...
YOLO系列论文综述(从YOLOv1到YOLOv11)【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
YOLOv11 1 摘要2 改进点3 模型性能4 模型架构 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】【第3篇:YOLOv1——YOLO的开山之作】【第4篇ÿ…...
【Spring】聊聊@EventListener注解原理
1.一个Demo出发 在平时的开发中,其实编写同步线程代码是比较容易的,但是如何将一些操作和另外一些操作进行解除耦合,而事件方式 是一种很好的解耦合方式,比如当一个用户注销一个APP之后,需要发送一些短信 让他引流回来…...
LangChain——HTML文本分割 多种文本分割
Text Splitters 文本分割器 加载文档后,您通常会想要对其进行转换以更好地适合您的应用程序。最简单的例子是,您可能希望将长文档分割成更小的块,以适合模型的上下文窗口。 LangChain 有许多内置的文档转换器,可以轻松地拆分、组…...
梯度爆炸与消失
梯度爆炸和梯度消失 一、概念解析 (一)梯度爆炸 定义 在深度神经网络训练的反向传播过程中,梯度爆炸是指梯度的值过大的现象。这会使模型的参数更新出现异常。 产生原因 深层网络与链式法则:深度神经网络按链式法则计算某层权重…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
