当前位置: 首页 > news >正文

如何在Python中进行数学建模?

数学建模是数据科学中使用的强大工具,通过数学方程和算法来表示真实世界的系统和现象。Python拥有丰富的库生态系统,为开发和实现数学模型提供了一个很好的平台。本文将指导您完成Python中的数学建模过程,重点关注数据科学中的应用。

数学建模导论

数学建模是将现实世界中的问题用数学术语表示的过程。它涉及定义变量、方程和约束来模拟或预测复杂系统的行为。这些模型可用于模拟、分析和预测复杂系统的行为。

在这里插入图片描述

在数据科学中,数学模型对于回归分析、分类、聚类、优化等任务至关重要。Python及其丰富的库生态系统为数学建模提供了强大的平台。

在Python中进行数学建模的步骤:

  • 问题表述:明确定义模型想要解决的问题。确定所涉及的相关变量、参数和关系。
  • 制定模型:一旦问题被定义,下一步就是制定数学模型。这涉及到将现实世界的问题转化为数学方程。您选择的模型类型将取决于问题的性质。常见的模型类型包括:
    线性模型:用于变量之间的关系是线性的问题。
    非线性模型:用于具有非线性关系的问题。
    微分方程:用于建模随时间变化的动态系统。
    随机模型:用于涉及随机性或不确定性的系统。

在这里插入图片描述

  • 实现:在编程环境中实现数学模型。这一步包括编写代码来表示方程并用数值求解它们。
  • 验证和分析:通过将模型的预测与真实世界的数据或实验结果进行比较来验证模型。分析模型在不同条件和参数下的行为。

为什么使用Python进行数学建模?

Python是数学建模的热门选择,因为它的简单性,可读性和广泛的库支持。数学建模中使用的一些关键库包括:

  • NumPy:提供对大型多维数组和矩阵的支持,沿着对这些数组进行操作的数学函数集合。
  • SciPy:基于NumPy构建,为科学和技术计算提供额外的功能,包括优化、积分、插值、特征值问题等。
  • SymPy:一个符号数学库,允许代数操作,微积分和方程求解。
  • Matplotlib:一个绘图库,用于创建静态、动画和交互式可视化。
  • Pandas:一个数据操作和分析库,提供无缝处理结构化数据所需的数据结构和函数。

Python中的数学建模技术

Python提供了几个库和工具,用于跨各个领域的数学建模。以下是一些流行的技术和相应的库:

  • 微分方程:使用SciPy、SymPy和DifferentialEquations.jl(通过PyCall)等库求解常微分方程和偏微分方程。
  • 优化:使用SciPy,CVXPY和PuLP等库进行优化和约束满足。
  • Simulation:使用SimPy(用于离散事件仿真)和PyDSTool(用于动态系统)等库模拟动态系统。
  • 统计建模:使用StatsModels、scikit-learn和PyMC 3等库将统计模型拟合到数据,以进行贝叶斯建模。

示例1:求解微分方程

让我们通过求解微分方程的简单示例来说明Python中数学建模的过程:

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# Define the differential equation
def damped_oscillator(t, y):return [y[1], -0.1 * y[1] - np.sin(y[0])]
initial_conditions = [0, 1]
t_span = (0, 20)
# Solve the differential equation
solution = solve_ivp(damped_oscillator, t_span, initial_conditions)
# Plot the solution
plt.plot(solution.t, solution.y[0])
plt.xlabel('Time')
plt.ylabel('Position')
plt.title('Damped Oscillator')
plt.show()

在这里插入图片描述
在这个例子中,我们定义了一个阻尼振荡器,微分方程指定了初始条件和时间跨度,使用SciPy中的solve_ivp求解方程,并使用matplotlib绘制解。

示例2:使用SciPy进行非线性优化

非线性优化涉及优化非线性目标函数。在这里,我们使用SciPy来解决一个非线性优化问题。

import numpy as np
from scipy.optimize import minimize# Define the objective function
def objective(x):return (x[0] - 2)**2 + (x[1] - 3)**2# Define the constraints
constraints = [{'type': 'ineq', 'fun': lambda x: 5 - (x[0] + x[1])},{'type': 'ineq', 'fun': lambda x: x[0]},{'type': 'ineq', 'fun': lambda x: x[1]}]# Define the initial guess
x0 = np.array([0, 0])# Solve the problem
result = minimize(objective, x0, constraints=constraints)# Print the results
print(f"Status: {result.success}")
print(f"x = {result.x}")
print(f"Objective value = {result.fun}")

输出

Status: True
x = [1.99999999 2.99999999]
Objective value = 1.4388348792344465e-16

示例3:使用SimPy进行离散事件模拟

离散事件仿真将系统的操作建模为时间上的事件序列。在这里,我们使用SimPy来模拟一个简单的队列系统。

安装:

pip install simpy

代码:

import simpy
import randomdef customer(env, name, counter, service_time):print(f'{name} arrives at the counter at {env.now:.2f}')with counter.request() as request:yield requestprint(f'{name} starts being served at {env.now:.2f}')yield env.timeout(service_time)print(f'{name} leaves the counter at {env.now:.2f}')def setup(env, num_counters, service_time, arrival_interval):counter = simpy.Resource(env, num_counters)for i in range(5):env.process(customer(env, f'Customer {i}', counter, service_time))while True:yield env.timeout(random.expovariate(1.0 / arrival_interval))i += 1env.process(customer(env, f'Customer {i}', counter, service_time))# Initialize the environment
env = simpy.Environment()
env.process(setup(env, num_counters=1, service_time=5, arrival_interval=10))# Run the simulation
env.run(until=50)

输出

Customer 0 arrives at the counter at 0.00
Customer 1 arrives at the counter at 0.00
Customer 2 arrives at the counter at 0.00
Customer 3 arrives at the counter at 0.00
Customer 4 arrives at the counter at 0.00
Customer 0 starts being served at 0.00
Customer 0 leaves the counter at 5.00
Customer 1 starts being served at 5.00
Customer 1 leaves the counter at 10.00
Customer 2 starts being served at 10.00
Customer 5 arrives at the counter at 12.90
Customer 2 leaves the counter at 15.00
Customer 3 starts being served at 15.00
Customer 6 arrives at the counter at 17.87
Customer 7 arrives at the counter at 18.92
Customer 3 leaves the counter at 20.00
Customer 4 starts being served at 20.00
Customer 8 arrives at the counter at 24.37
Customer 4 leaves the counter at 25.00
Customer 5 starts being served at 25.00
Customer 5 leaves the counter at 30.00
Customer 6 starts being served at 30.00
Customer 9 arrives at the counter at 31.08
Customer 10 arrives at the counter at 32.16
Customer 6 leaves the counter at 35.00
Customer 7 starts being served at 35.00
Customer 11 arrives at the counter at 36.80
Customer 7 leaves the counter at 40.00
Customer 8 starts being served at 40.00
Customer 8 leaves the counter at 45.00
Customer 9 starts being served at 45.00
Customer 12 arrives at the counter at 45.34

示例4:使用StatsModels的线性回归

线性回归是一种统计方法,用于对因变量与一个或多个自变量之间的关系进行建模。在这里,我们使用StatsModels来执行线性回归。

import statsmodels.api as sm
import numpy as np# Generate random data
np.random.seed(0)
X = np.random.rand(100, 1)
y = 3 * X.squeeze() + 2 + np.random.randn(100)# Add a constant to the independent variables
X = sm.add_constant(X)# Fit the model
model = sm.OLS(y, X).fit()# Print the results
print(model.summary())

输出

                           OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.419
Model:                            OLS   Adj. R-squared:                  0.413
Method:                 Least Squares   F-statistic:                     70.80
Date:                Tue, 18 Jun 2024   Prob (F-statistic):           3.29e-13
Time:                        08:16:41   Log-Likelihood:                -141.51
No. Observations:                 100   AIC:                             287.0
Df Residuals:                      98   BIC:                             292.2
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          2.2222      0.193     11.496      0.000       1.839       2.606
x1             2.9369      0.349      8.414      0.000       2.244       3.630
==============================================================================
Omnibus:                       11.746   Durbin-Watson:                   2.083
Prob(Omnibus):                  0.003   Jarque-Bera (JB):                4.097
Skew:                           0.138   Prob(JB):                        0.129
Kurtosis:                       2.047   Cond. No.                         4.30
==============================================================================

数学建模在数据科学中的应用

数学建模在数据科学中有着广泛的应用。以下是一些例子:

  • 预测分析:预测分析涉及使用历史数据来预测未来事件。数学模型,如回归模型,时间序列模型和机器学习算法,通常用于预测分析。
  • 优化:优化涉及从一组可能的解决方案中找到问题的最佳解决方案。数学模型,如线性规划,整数规划和非线性规划,用于解决物流,金融和制造等各个领域的优化问题。
  • 分类:分类涉及根据数据点的特征为数据点分配标签。逻辑回归、决策树和支持向量机等数学模型用于医疗保健、金融和营销等领域的分类任务。
  • 聚类:聚类涉及根据数据点的相似性将数据点分组到聚类中。数学模型,如k-means聚类,层次聚类和DBSCAN,用于客户细分,图像分析和生物信息学等领域的聚类任务。
  • 仿真:仿真涉及创建真实世界系统的虚拟模型,以研究其在不同条件下的行为。数学模型,如微分方程和基于代理的模型,用于流行病学,工程和经济学等领域的模拟。

结论

数学建模是数据科学中的一个基本工具,它使我们能够表示、分析和预测复杂系统的行为。Python具有广泛的库支持,为开发和实现数学模型提供了极好的平台。

通过遵循本文中概述的步骤,您可以在Python中创建和验证数学模型,并将其应用于各种数据科学任务,例如预测分析,优化,分类,聚类和模拟。无论您是初学者还是经验丰富的数据科学家,掌握Python中的数学建模都将增强您获得见解和做出数据驱动决策的能力。

相关文章:

如何在Python中进行数学建模?

数学建模是数据科学中使用的强大工具,通过数学方程和算法来表示真实世界的系统和现象。Python拥有丰富的库生态系统,为开发和实现数学模型提供了一个很好的平台。本文将指导您完成Python中的数学建模过程,重点关注数据科学中的应用。 数学建…...

JavaSE——类与对象(5)

一、抽象类 1.1为什么需要抽象类 父类的某些方法,不确定怎么实现,也不需要实现。 class Animal{public String name;public Animal(String name){this.name name;}public void eat()//这里实现了也没有意义{System.out.println("这是一个动物&am…...

Istio笔记01--快速体验Istio

Istio笔记01--快速体验Istio 介绍部署与测试部署k8s安装istio测试istio 注意事项说明 介绍 Istio是当前最热门的服务网格产品,已经被广泛应用于各个云厂商和IT互联网公司。企业可以基于Istio轻松构建服务网格,在接入过程中应用代码无需更改,…...

面试小札:Java如何实现并发编程

多线程基础 继承Thread类 定义一个类继承自 Thread 类,重写 run 方法。在 run 方法中编写线程要执行的任务逻辑。例如: java class MyThread extends Thread { Override public void run() { System.out.println("线程执行的任务…...

java-a+b 开启java语法学习

代码 (ab) import java.util.Scanner; //导入 java.util包中的Scanner 类,允许读取键盘输入数据public class Main { // 创建一个公共类 Mainpublic static void main(String[] args) {//程序入口点,main方法Scanner scanner new Scanner(…...

RNN模型文本预处理--数据增强方法

数据增强方法 数据增强是自然语言处理(NLP)中常用的一种技术,通过生成新的训练样本来扩充数据集,从而提高模型的泛化能力和性能。回译数据增强法是一种常见的数据增强方法,特别适用于文本数据。 回译数据增强法 定义…...

maven 中<packaging>pom</packaging>配置使用

在 Maven 项目的 pom.xml 文件中, 元素用于指定项目的打包类型。默认情况下,如果 元素没有被显式定义,Maven 会假设其值为 jar。但是,当您设置 pom 时,这意味着该项目是一个 POM(Project Object Model&…...

【Python中while循环】

一、深拷贝、浅拷贝 1、需求 1)拷贝原列表产生一个新列表 2)想让两个列表完全独立开(针对改操作,读的操作不改变) 要满足上述的条件,只能使用深拷贝 2、如何拷贝列表 1)直接赋值 # 定义一个…...

【深度学习】服务器常见命令

1、虚拟环境的安装位置 先进入虚拟环境 which python2、升序查看文件内容 ls -ltr3、查看服务器主机空间使用情况 df -hdf -h .4、查看本地空间使用情况 du -sh ./*du -sh * | sort -nr5、查找并删除进程 # 查找 ps aux# 删除 kill -KILL pid6、查看服务器配置 lscpuuna…...

技术分析模板

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示:这里可以添加技术概要 例如: openAI 的 GPT 大模型的发展历程。 整体架构流程 提示:这里可以添加技术整体架构 例如: 在语言模型中,编码器和解码器…...

python:文件操作

一、文件路径 在Windows系统中,每个磁盘都有自己的根目录,用分区名加反斜杠来表示。我们定位文件的位置有两种方法,一种是绝对路径,另一种是相对路径。绝对路径是从根目录出发的路径,路径中的每个路径之间用反斜杠来分…...

Nginx和Apache有什么异同?

Nginx和Apache都是广泛使用的Web服务器软件,它们各自具有独特的特点和优势,适用于不同的应用场景。以下是关于Nginx和Apache的不同、相同以及使用区别的详细分析: 一、不同点 资源占用与并发处理能力: Nginx使用更少的内存和CPU资…...

泰州榉之乡全托机构探讨:自闭症孩子精细动作训练之法

当发现自闭症孩子精细动作落后时,家长们往往会感到担忧和困惑。那么,自闭症孩子精细动作落后该如何训练呢?今天,泰州榉之乡全托机构就来为大家详细解答。 榉之乡大龄自闭症托养机构在江苏、广东、江西等地都有分校,一直…...

Cookie跨域

跨域:跨域名(IP) 跨域的目的是共享Cookie。 session操作http协议,每次既要request,也要response,cookie在创建的时候会产生一个字符串然后随着response返回。 全网站的各个页面都会带着登陆的时候的cookie …...

qt QGraphicsPolygonItem详解

1、概述 QGraphicsPolygonItem是Qt框架中QGraphicsItem的一个子类,它提供了一个可以添加到QGraphicsScene中的多边形项。通过QGraphicsPolygonItem,你可以定义和显示一个多边形,包括其填充颜色、边框样式等属性。QGraphicsPolygonItem支持各…...

“harmony”整合不同平台的单细胞数据之旅

其实在Seurat v3官方网站的Vignettes中就曾见过该算法,但并没有太多关注,直到看了北大张泽民团队在2019年10月31日发表于Cell的《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》,为了同时整合两类数据&#xf…...

如何构建一个可扩展、全球可访问的 GenAI 架构?

你有没有尝试过使用人工智能生成图像? 如果你尝试过,你就会知道,一张好的图像的关键在于一个详细具体的提示。 我不擅长这种详细的视觉提示,所以我依赖大型语言模型来生成详细的提示,然后使用这些提示来生成出色的图像…...

QT实战--qt各种按钮实现

本篇介绍qt一些按钮的实现,包括正常按钮;带有下拉箭头的按钮的各种实现;按钮和箭头两部分分别响应;图片和按钮大小一致;图片和按钮大小不一致的处理;文字和图片位置的按钮 效果图如下: 详细实现…...

RNN And CNN通识

CNN And RNN RNN And CNN通识一、卷积神经网络(Convolutional Neural Networks,CNN)1. 诞生背景2. 核心思想和原理(1)基本结构:(2)核心公式:(3)关…...

生产环境中:Flume 与 Prometheus 集成

在生产环境中,将 Apache Flume 与 Prometheus 集成的过程,需要借助 JMX Exporter 或 HTTP Exporter 来将 Flume 的监控数据转换为 Prometheus 格式。以下是详细的实现方法,连同原理和原因进行逐步解释,让刚接触的初学者也能完成集…...

求平均年龄

求平均年龄 C语言代码C 代码Java代码Python代码 💐The Begin💐点点关注,收藏不迷路💐 班上有学生若干名,给出每名学生的年龄(整数),求班上所有学生的平均年龄,保留到小数…...

Ardusub源码剖析(1)——AP_Arming_Sub

代码 AP_Arming_Sub.h #pragma once#include <AP_Arming/AP_Arming.h>class AP_Arming_Sub : public AP_Arming { public:AP_Arming_Sub() : AP_Arming() { }/* Do not allow copies */CLASS_NO_COPY(AP_Arming_Sub);bool rc_calibration_checks(bool display_failure)…...

【NLP 2、机器学习简介】

人生的苦难不过伏尔加河上的纤夫 —— 24.11.27 一、机器学习起源 机器学习的本质 —— 找规律 通过一定量的训练样本找到这些数据样本中所蕴含的规律 规律愈发复杂&#xff0c;机器学习就是在其中找到这些的规律&#xff0c;挖掘规律建立一个公式&#xff0c;导致对陌生的数…...

数据结构与算法——N叉树(自学笔记)

本文参考 N 叉树 - LeetBook - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台 遍历 前序遍历&#xff1a;A->B->C->E->F->D->G后序遍历&#xff1a;B->E->F->C->G->D->A层序遍历&#xff1a;A->B->C->D->…...

【趣味升级版】斗破苍穹修炼文字游戏HTML,CSS,JS

目录 图片展示 开始游戏 手动升级&#xff08;满100%即可升级&#xff09; 升级完成&#xff0c;即可解锁打怪模式 新增功能说明&#xff1a; 如何操作&#xff1a; 完整代码 实现一个简单的斗破苍穹修炼文字游戏&#xff0c;你可以使用HTML、CSS和JavaScript结合来构建…...

【Oracle】个人收集整理的Oracle常用SQL及命令

【建表】 create table emp( id number(12), name nvarchar2(20), primary key(id) ); 【充值一】 insert into emp select rownum,dbms_random.string(*,dbms_random.value(6,20)) from dual connect by level<101; 【充值二】 begin for i in 1..100 loop inser…...

Linux内核4.14版本——ccf时钟子系统(5)——通用API

1. clk_get 1.1 __of_clk_get_by_name 1.2 clk_get_sys 2. clk_prepare_enable 2.1 clk_prepare 2.2 clk_enable 3. clk_set_rate 1. clk_get clock get是通过clock名称获取struct clk指针的过程&#xff0c;由clk_get、devm_clk_get、clk_get_sys、of_clk_get、of_clk_g…...

安装MySQL 5.7 亲测有效

前言&#xff1a;本文是笔者在安装MySQL5.7时根据另一位博主大大的安装教程基础上做了一些修改而成 首先在这里表示对博主大大的感谢 下面附博主大大地址 下面的步骤言简意赅 跟着做就不会出错 希望各位读者耐下心来 慢慢解决安装中出现的问题~MySQL 5.7 安装教程&#xff08;全…...

《Django 5 By Example》阅读笔记:p455-p492

《Django 5 By Example》学习第 16 天&#xff0c;p455-p492 总结&#xff0c;总计 38 页。 一、技术总结 1.myshop (1)打折功能 使用折扣码实现&#xff0c;但是折扣码是手动生成的&#xff0c;感觉实际业务中应该不是这样的。 (2)推荐功能 使用 Redis 做缓存&#xff0…...

Element-UI 官网的主题切换动画

文章目录 实现圆形扩散过渡动画 实现一下 Element-UI 官网的主题切换动画加粗样式 实现 首先我们起一个 html 文件&#xff0c;写一个按钮&#xff0c;以及简单的背景颜色切换&#xff0c;来模拟主题的切换 想要实现过渡效果&#xff0c;需要先用到一个 JavaScript 的原生方…...

最专业的手机网站制作/舆情网站直接打开怎么弄

我在熊猫数据框中有一组计算的OHLCVA每日证券数据&#xff0c;如下所示&#xff1a;>>> type(data_dy)>>> data_dyOpen High Low Close Volume Adj CloseDate2012-12-28 140.64 141.42 139.87 140.03 148806700 134.632012-12-31 13…...

建站网站模板下载/爱链网买链接

1、聊一聊今天跟大家分享一首海上钢琴曲的经典插曲&#xff0c;同样海上钢琴师这部电影也给了bug菌非常多的人生启发&#xff0c;或许每种职业都是相似的吧。本文主要跟大家介绍C语言枚举类型的相关实用技巧并纠正一些在理解上出现的误区。2、情景再现小鲁班bug菌&#xff0c;你…...

新版新白娘子传奇小青最后和谁在一起了/长沙优化排名

http://www.sdpc.gov.cn/zcfb/zcfbl/201503/t20150313_667332.html 《外商投资产业指导目录&#xff08;2015年修订&#xff09;》已经国务院批准&#xff0c;现予以发布&#xff0c;自2015年4月10日起施行。2011年12月24日国家发展和改革委员会、商务部发布的《外商投资产业指…...

随州做网站/商家联盟营销方案

Python使用pip安装报错ModuleNotFoundError: No module named pip._internal.cli.main’的解决方法 大家好&#xff0c;我叫亓官劼&#xff08;q guān ji &#xff09;&#xff0c;在CSDN中记录学习的点滴历程&#xff0c;时光荏苒&#xff0c;未来可期&#xff0c;加油~博客地…...

深圳哪里有网站建设/移动端seo关键词优化

疫情微博情绪识别挑战赛 疫情微博情绪识别挑战赛 举办方&#xff1a;科大讯飞xDatawhale 赛事地址&#xff1a;疫情微博情绪识别挑战赛-点击直达 赛事背景 疫情发生对人们生活生产的方方面面产生了重要影响&#xff0c;并引发了国内舆论的广泛关注&#xff0c;众多网民也参…...

做a免费网站有哪些/免费推广软件工具

生物信息很多时候要爬数据。最近也看了一些这些方面的。 url<-"要爬取的网址" url.html<-htmlParse(url,encoding"UTF-8") 如果要获得部分信息&#xff0c;则使用XPath方法。 xpath<-"//*[id填写目标id]/span[id细分标签的id] 目标id.node&l…...