当前位置: 首页 > news >正文

【LeetCode刷题之路】120:三角形最小路径和的两种解法(动态规划优化)

在这里插入图片描述

LeetCode刷题记录
  • 🌐 我的博客主页:iiiiiankor
  • 🎯 如果你觉得我的内容对你有帮助,不妨点个赞👍、留个评论✍,或者收藏⭐,让我们一起进步!
  • 📝 专栏系列:LeetCode 刷题日志
  • 🌱 文章内容来自我的学习与实践经验,如果你有任何想法或问题,欢迎随时在评论区交流讨论。让我们一起探索更多的可能!🚀

题目链接:120. 三角形最小路径和

题目描述:

给定一个三角形triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标i,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

示例 2:

输入:triangle = [[-10]]
输出:-10

提示

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -10^4 <= triangle[i][j] <= 10^4

如图所示:
例子:
[[20],[30,40],[60,50,70],[40,10,80,30]]

在这里插入图片描述


思路1:从上开始dp

分析:
在这里插入图片描述

class Solution {
public:int minimumTotal(vector<vector<int> > &triangle) {if(triangle.empty())    return 0;int row = triangle.size();vector<vector<int>> dp(row);for(size_t i =0;i<row;++i){dp[i].resize(triangle[i].size(),0);}//初始化dp[0][0] = triangle[0][0];//状态转移for(size_t i = 1;i<row;++i){for(size_t j = 0;j<=i;++j){if(j==0) dp[i][j]=dp[i-1][j] + triangle[i][j];else if(j==i) dp[i][j]=dp[i-1][j-1]+triangle[i][j];else{dp[i][j] = min( dp[i-1][j-1], dp[i-1][j] ) + triangle[i][j];}}}//最后一行int min_s = dp[row-1][0];for(size_t i = 1;i < dp[row-1].size();++i){min_s = min(dp[row-1][i],min_s);}return min_s;}
};

思路2:从下向上dp,优化空间复杂度

思路1的时间复杂度为O(n^2),显然空间复杂度过高了,可以优化为O(n),思想如下:
在这里插入图片描述

class Solution {
public:int minimumTotal(vector<vector<int> > &triangle) {if(triangle.empty())    return 0;int row = triangle.size();vector<int> dp(triangle[row-1].size());//初始化for(size_t i = 0;i<dp.size();++i){dp[i] = triangle[row-1][i];}//状态转移for(int i = row-2;i>=0;--i){for(int j = 0;j<triangle[i].size();++j){dp[j] = triangle[i][j] + min(dp[j],dp[j+1]);}}//最后一行return dp[0];}
};

相关文章:

【LeetCode刷题之路】120:三角形最小路径和的两种解法(动态规划优化)

LeetCode刷题记录 &#x1f310; 我的博客主页&#xff1a;iiiiiankor&#x1f3af; 如果你觉得我的内容对你有帮助&#xff0c;不妨点个赞&#x1f44d;、留个评论✍&#xff0c;或者收藏⭐&#xff0c;让我们一起进步&#xff01;&#x1f4dd; 专栏系列&#xff1a;LeetCode…...

神经网络中常见的激活函数Sigmoid、Tanh和ReLU

激活函数在神经网络中起着至关重要的作用&#xff0c;它们决定了神经元的输出是否应该被激活以及如何非线性地转换输入信号。不同的激活函数适用于不同的场景&#xff0c;选择合适的激活函数可以显著影响模型的性能和训练效率。以下是三种常见的激活函数&#xff1a;Sigmoid、T…...

适用于学校、医院等低压用电场所的智能安全配电装置

引言 电力&#xff0c;作为一种清洁且高效的能源&#xff0c;极大地促进了现代生活的便捷与舒适。然而&#xff0c;与此同时&#xff0c;因使用不当或维护缺失等问题&#xff0c;漏电、触电事件以及电气火灾频发&#xff0c;对人们的生命安全和财产安全构成了严重威胁&#xf…...

基于python爬虫的智慧人才数据分析系统

废话不多说&#xff0c;先看效果图 更多效果图可私信我获取 源码分享 import os import sysdef main():"""Run administrative tasks."""os.environ.setdefault(DJANGO_SETTINGS_MODULE, 智慧人才数据分析系统.settings)try:from django.core.m…...

LeetCode-315. Count of Smaller Numbers After Self

目录 题目描述 解题思路 【C】 【Java】 复杂度分析 LeetCode-315. Count of Smaller Numbers After Selfhttps://leetcode.com/problems/count-of-smaller-numbers-after-self/description/ 题目描述 Given an integer array nums, return an integer array counts whe…...

根据导数的定义计算导函数

根据导数的定义计算导函数 1. Finding derivatives using the definition (使用定义求导)1.1. **We want to differentiate f ( x ) 1 / x f(x) 1/x f(x)1/x with respect to x x x**</font>1.2. **We want to differentiate f ( x ) x f(x) \sqrt{x} f(x)x ​ wi…...

WPF关于打开新窗口获取数据的回调方法的两种方式

一种基于消息发送模式 一种基于回调机制 基于消息发送模式 父页面定义接收的_selectedPnNumberStandarMsg保证是唯一 Messenger.Default.Register<PlateReplaceApplyModel>(this, _selectedPnNumberStandarMsgToken, platePnNumberModel > { …...

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法&#xff1a;不是采用单一检测器分析数据集的所有特征&#xff0c;而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中&#xff0c;我们的目标是识别数据中最为异常的记录&#xff0c;这种异常性可以…...

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接&#xff0c;先去看看两年前的题目的write up &#xff08;https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md&#xff09; 从别人的write up中了解到&…...

YOLO模型训练后的best.pt和last.pt区别

在选择YOLO模型训练后的权重文件best.pt和last.pt时&#xff0c;主要取决于具体的应用场景‌&#xff1a;‌12 ‌best.pt‌&#xff1a;这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段&#xff0c;因为它包含了在验证集上表现最好的模型权重&#x…...

Pareidoscope - 语言结构关联工具

文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具&#xff0c…...

GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT&#xff08;Generative Pre-trained Transformer&#xff09; 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构&#xff0c;由 Vaswani 等人在论文 “Attention Is All You Need”&#xff08;2017&#xff09;中提…...

软件无线电(SDR)的架构及相关术语

今天简要介绍实现无线电系统调制和解调的主要方法&#xff0c;这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率&#xff08;称为外差&#xff09;&#xff0c;而第二种超外差是通过两个调制阶段来实…...

Python将Excel文件转换为JSON文件

工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...

排序算法之选择排序篇

思想&#xff1a; 每次从未排序的部分找出最小的元素&#xff0c;将其放到已排序部分的末尾 从数据结构中找到最小值&#xff0c;放到第一位&#xff0c;放到最前面&#xff0c;之后再从剩下的元素中找出第二小的值放到第二位&#xff0c;以此类推。 实现思路&#xff1a; 遍…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

A050-基于spring boot物流管理系统设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

[自然语言处理] NLP-RNN及其变体-干货

一、认识RNN模型 1 什么是RNN模型 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出. 一般单层神经网络结构: RNN单层网络结构: 以时间步对RNN进行展开后的单层…...

Elasticsearch ILM 索引生命周期管理讲解与实战

ES ILM 索引生命周期管理讲解与实战 Elasticsearch ILM索引生命周期管理:深度解析与实战演练1. 引言1.1 背景介绍1.2 研究意义2. ILM核心概念2.1 ILM的四个阶段2.1.1 Hot阶段2.1.2 Warm阶段2.1.3 Cold阶段2.1.4 Delete阶段3. ILM实战指南3.1 定义ILM策略3.1.1 创建ILM策略3.1.…...

重塑视频新语言,让每一帧都焕发新生——Video-Retalking,开启数字人沉浸式交流新纪元!

模型简介 Video-Retalking 模型是一种基于深度学习的视频再谈话技术&#xff0c;它通过分析视频中的音频和图像信息&#xff0c;实现视频角色口型、表情乃至肢体动作的精准控制与合成。这一技术的实现依赖于强大的技术架构和核心算法&#xff0c;特别是生成对抗网络&#xff0…...

联想Lenovo SR650服务器硬件监控指标解读

随着企业IT架构的复杂性和业务需求的增长&#xff0c;服务器的稳定运行变得至关重要。联想Lenovo SR650服务器以其高性能和稳定性&#xff0c;在各类应用场景中发挥着关键作用。为了保障服务器的稳定运行&#xff0c;监控易作为一款专业的IT基础设施监控软件&#xff0c;为联想…...

二十一、QT C++

1.1QT介绍 1.1.1 QT简介 Qt 是一个跨平台的应用程序和用户界面框架&#xff0c;用于开发图形用户界面&#xff08;GUI&#xff09;应用程序以及命令行工具。它最初由挪威的 Trolltech &#xff08;奇趣科技&#xff09;公司开发&#xff0c;现在由 Qt Company 维护&#xff…...

微服务上下线动态感知实现的技术解析

序言 随着微服务架构的广泛应用&#xff0c;服务的动态管理和监控变得尤为重要。在微服务架构中&#xff0c;服务的上下线是一个常见的操作&#xff0c;如何实时感知这些变化&#xff0c;确保系统的稳定性和可靠性&#xff0c;成为了一个关键技术挑战。本文将深入探讨微服务上…...

指针与引用错题汇总

int *p[3]; // 定义一个包含 3 个指向 int 的指针的数组int a 10, b 20, c 30; p[0] &a; // p[0] 指向 a p[1] &b; // p[1] 指向 b p[2] &c; // p[2] 指向 c // 访问指针所指向的值 printf("%d %d %d\n", *p[0], *p[1], *p[2]); // 输出: 10 20 30…...

短视频账号矩阵系统源码--独立saas技术部署

短视频矩阵系统通过多账号在多个平台上发布内容&#xff0c;形成一种网络效应。对于抖音平台而言&#xff0c;技术公司需具备特定接口权限方能进行开发工作。然而&#xff0c;视频发布及企业号评论与回复等功能的接口权限往往难以获取。通过构建抖音账号矩阵&#xff0c;利用多…...

绍兴网站制作多少钱/爱站小工具计算器

1. 打开ppt&#xff0c;将即将打印的部分编辑好&#xff0c;再 另存为—>文件格式请选择windows 图元文件&#xff0c;保存好即可&#xff01; 2.打开word&#xff0c;使用word的宏&#xff0c;编辑这些图片的宏代码&#xff1a; &#xff08;1&#xff09; 点击“工具”…...

昆山建设银行网站/东莞网络优化公司

目前为止&#xff0c;已经对 Vue 的基本用法有了初步了解。由于不想自己手动去开发组件&#xff08;一方面嫌丑&#xff0c;另一方面感觉上手太慢&#xff09;&#xff0c;所以直接就开始学习第三方组件库的使用。根据之前的前端开发经验&#xff0c;猜想 Vue 框架肯定存在着很…...

国外交友网站怎么做/百度搜索排名机制

这个可以跟踪变量值的变化&#xff0c;普通的python变量不能即时地显示在屏幕上面。...

网站设计报告/seo关键词优化排名

为什么80%的码农都做不了架构师&#xff1f;>>> 这里介绍Hibernate连接配置方法&#xff0c;包括介绍在c3p0和dbcp中&#xff0c;都是必需的&#xff0c;因为Hibernate会根据上述的配置来生成connections&#xff0c;再交给c3p0或dbcp管理.但是&#xff0c;proxool…...

公司网站怎样做维护/百度大数据官网

主要是卡在那里不动&#xff0c;并且没有报错信息。让人很头疼。 在网上看了很多办法大概有&#xff1a; 1:说数据库连接不正确。 2:需要clear项目的。 3:修改tomcat的日志级别。等等但是都没有解决问题解决办法&#xff1a;1.查看Myeclipse自带的Tomcat。是不是版本过低&#…...

wordpress 如何修改导航链接/seo公司

“什么是数据产品经理”这个问题的本质其实是在问“数据产品经理和产品经理到底有什么区别?”&#xff0c;金老师先来看看他们之间的区别吧!用数据来指导产品设计已经不是什么新鲜事了&#xff0c;几乎所有的产品经理都需要依赖数据做产品决策——从早期产品开发时的用户研究&…...