当前位置: 首页 > news >正文

【Pytorch】优化器(Optimizer)模块‘torch.optim’

torch.optim 是 PyTorch 中提供的优化器(Optimizer)模块,用于优化神经网络模型的参数,更新网络权重,使得模型在训练过程中最小化损失函数。它提供了多种常见的优化算法,如 梯度下降法(SGD)AdamAdagradRMSprop 等,用户可以根据需要选择合适的优化方法。

目录

      • 优化器的工作原理
      • `torch.optim` 中的常见优化器
      • 常用优化器参数
      • 优化器的基本使用方法
      • 完整示例
      • 总结

优化器的工作原理

优化器通过计算损失函数对模型参数的梯度(通常使用反向传播算法),然后根据优化算法的规则更新模型的参数,以逐步减少损失函数的值。具体更新规则取决于所选的优化算法。

torch.optim 中的常见优化器

  1. SGD(Stochastic Gradient Descent)

    • SGD 是最基本的优化算法,它通过计算损失函数的梯度,并按某个学习率(learning rate)更新模型的参数。
    • 可以选择是否使用动量(momentum)来加速收敛。

    示例

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    
  2. Adam(Adaptive Moment Estimation)

    • Adam 是一种结合了动量法(Momentum)和自适应学习率(AdaGrad)的优化算法。它会分别对每个参数维护一个一阶矩估计(梯度的平均值)和二阶矩估计(梯度的平方的平均值),从而自适应地调整每个参数的学习率。
    • Adam 通常比 SGD 更常用于深度学习中的优化,尤其是在处理大规模数据时。

    示例

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    
  3. Adagrad(Adaptive Gradient Algorithm)

    • Adagrad 是一种自适应优化算法,它为每个参数分配不同的学习率,并根据每个参数的梯度历史调整学习率。梯度大的参数会减小学习率,而梯度小的参数会增大学习率。

    示例

    optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01)
    
  4. RMSprop(Root Mean Square Propagation)

    • RMSprop 是 Adagrad 的一种变体,旨在解决 Adagrad 学习率过早衰减的问题。它使用指数衰减的平均来计算梯度的平方,从而避免了梯度下降时过早减小学习率。

    示例

    optimizer = torch.optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99)
    
  5. AdamW(Adam with Weight Decay)

    • AdamW 是 Adam 优化器的一个变种,加入了权重衰减(weight decay),用来防止模型过拟合。它与标准的 Adam 不同之处在于,它在参数更新过程中将权重衰减项分离出来,避免了标准 Adam 中衰减项的负面影响。

    示例

    optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.01)
    
  6. LBFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)

    • LBFGS 是一种二阶优化方法,它使用目标函数的二阶导数(Hessian 矩阵的近似)来加速收敛。与其他一阶方法相比,它在计算和内存使用上比较昂贵,但在某些特定问题中(如小批量数据和二次优化问题)能够提供更快的收敛速度。

    示例

    optimizer = torch.optim.LBFGS(model.parameters(), lr=0.1)
    

常用优化器参数

每个优化器通常会接受以下几个参数:

  • params:待优化的参数(通常是模型的权重),可以使用 model.parameters() 获取。
  • lr(Learning Rate):学习率,控制每次参数更新的步长。较小的学习率可能导致收敛过慢,较大的学习率可能导致发散。
  • momentum(可选):用于动量的参数,通常用来加速收敛。
  • weight_decay(可选):L2 正则化系数,用于防止模型过拟合。
  • betas(Adam 和一些其他优化器):用于控制一阶矩(梯度的均值)和二阶矩(梯度的方差)衰减率的超参数。

优化器的基本使用方法

  1. 创建优化器
    通常在定义了模型后,通过 torch.optim 创建一个优化器,并将模型的参数传递给优化器。

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    
  2. 梯度清零
    在每次迭代前,需要将模型参数的梯度清零,避免梯度累积。

    optimizer.zero_grad()
    
  3. 计算梯度
    使用反向传播计算梯度。

    loss.backward()
    
  4. 更新参数
    调用 step() 方法,根据计算出的梯度更新模型的参数。

    optimizer.step()
    

完整示例

下面是一个完整的使用优化器的示例:

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的神经网络
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(10, 20)self.fc2 = nn.Linear(20, 1)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 创建模型
model = SimpleNet()# 创建优化器(使用 Adam 优化器)
optimizer = optim.Adam(model.parameters(), lr=0.001)# 假设有一些输入数据和目标标签
input_data = torch.randn(5, 10)  # 输入数据:5个样本,每个样本10维
target = torch.randn(5, 1)       # 目标标签:5个样本,每个样本1维# 定义损失函数
criterion = nn.MSELoss()# 训练过程
for epoch in range(100):  # 训练 100 次# 前向传播output = model(input_data)# 计算损失loss = criterion(output, target)# 清零梯度optimizer.zero_grad()# 反向传播loss.backward()# 更新参数optimizer.step()# 打印每个 epoch 的损失if (epoch + 1) % 10 == 0:print(f'Epoch [{epoch+1}/100], Loss: {loss.item():.4f}')

总结

  • torch.optim 提供了多种优化器(如 SGD、Adam、RMSprop 等)用于训练神经网络,用户可以选择合适的优化器来优化模型的参数。
  • 常见的优化器包括 Adam(适应性调整学习率)、SGD(随机梯度下降)、RMSpropAdagrad 等,选择哪个优化器取决于你的任务、模型和实验。
  • 优化器的核心工作流程包括:清零梯度、计算梯度、反向传播、更新参数。

选择合适的优化器和调优超参数(如学习率)是深度学习训练的一个关键部分。

相关文章:

【Pytorch】优化器(Optimizer)模块‘torch.optim’

torch.optim 是 PyTorch 中提供的优化器(Optimizer)模块,用于优化神经网络模型的参数,更新网络权重,使得模型在训练过程中最小化损失函数。它提供了多种常见的优化算法,如 梯度下降法(SGD&#…...

API平台建设之路:从0到1的实践指南

在这个互联网蓬勃发展的时代,API已经成为连接各个系统、服务和应用的重要纽带。搭建一个优质的API平台不仅能为开发者提供便利,更能创造可观的商业价值。让我们一起探讨如何打造一个成功的API平台。 技术架构是API平台的根基。选择合适的技术栈对平台的…...

【Flink-scala】DataStream编程模型之窗口计算-触发器-驱逐器

DataStream API编程模型 1.【Flink-Scala】DataStream编程模型之数据源、数据转换、数据输出 2.【Flink-scala】DataStream编程模型之 窗口的划分-时间概念-窗口计算程序 文章目录 DataStream API编程模型前言1.触发器1.1 代码示例 2.驱逐器2.1 代码示例 总结 前言 本小节我想…...

信号灯集以及 P V 操作

一、信号灯集 1.1 信号灯集的概念 信号灯集是进程间同步的一种方式。 信号灯集创建后,在信号灯集内部会有很多个信号灯。 每个信号灯都可以理解为是一个信号量。 信号灯的编号是从0开始的。 比如A进程监视0号灯,B进程监视1号灯。 0号灯有资源&…...

在 Flutter app 中,通过视频 URL 下载视频到手机相册

在 Flutter app 中,通过视频 URL 下载视频到手机相册可以通过以下步骤实现: 1. 添加依赖 使用 dio 下载文件,结合 path_provider 获取临时存储路径,以及 gallery_saver 将文件保存到相册。 在 pubspec.yaml 中添加以下依赖&…...

Nature Methods | 人工智能在生物与医学研究中的应用

Nature Methods | 人工智能在生物与医学研究中的应用 生物研究中的深度学习 随着人工智能(AI)技术的迅速发展,尤其是深度学习和大规模预训练模型的出现,AI在生物学研究中的应用正在经历一场革命。从基因组学、单细胞组学到癌症生…...

Axure PR 9 随机函数 设计交互

​大家好,我是大明同学。 这期内容,我们将深入探讨Axure中随机函数的用法。 随机函数 创建随机函数所需的元件 1.打开一个新的 RP 文件并在画布上打开 Page 1。 2.在元件库中拖出一个矩形元件。 3.选中矩形元件,样式窗格中,将…...

【人工智能基础05】决策树模型

文章目录 一. 基础内容1. 决策树基本原理1.1. 定义1.2. 表示成条件概率 2. 决策树的训练算法2.1. 划分选择的算法信息增益(ID3 算法)信息增益比(C4.5 算法)基尼指数(CART 算法)举例说明:计算各个…...

【人工智能基础03】机器学习(练习题)

文章目录 课本习题监督学习的例子过拟合和欠拟合常见损失函数,判断一个损失函数的好坏无监督分类:kmeans无监督分类,Kmeans 三分类问题变换距离函数选择不同的起始点 重点回顾1. 监督学习、半监督学习和无监督学习的定义2. 判断学习场景3. 监…...

HarmonyOS(60)性能优化之状态管理最佳实践

状态管理最佳实践 1、避免在循环中访问状态变量1.1 反例1.2 正例 2、避免不必要的状态变量的使用3、建议使用临时变量替换状态变量3.1 反例3.2 正例 4、参考资料 1、避免在循环中访问状态变量 在应用开发中,应避免在循环逻辑中频繁读取状态变量,而是应该…...

数据库课程设计报告 超市会员管理系统

一、系统简介 1.1设计背景 受到科学技术的推动,全球计算机的软硬件技术迅速发展,以计算机为基础支撑的信息化如今已成为现代企业的一个重要标志与衡量企业综合实力的重要标准,并且正在悄无声息的影响与改变着国内外广泛的中小型企业的运营模…...

C++算法练习-day54——39.组合总和

题目来源:. - 力扣(LeetCode) 题目思路分析 题目:给定一个整数数组 candidates 和一个目标数 target,找出所有独特的组合,这些组合中的数字之和等于 target。每个数字在每个组合中只能使用一次。 思路&a…...

计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Linux的文件系统

这里写目录标题 一.文件系统的基本组成索引节点目录项文件数据的存储扇区三个存储区域 二.虚拟文件系统文件系统分类进程文件表读写过程 三.文件的存储连续空间存放方式缺点 非连续空间存放方式链表方式隐式链表缺点显示链接 索引数据库缺陷索引的方式优点:多级索引…...

【Vue3】从零开始创建一个VUE项目

【Vue3】从零开始创建一个VUE项目 手动创建VUE项目附录 package.json文件报错处理: Failed to get response from https://registry.npmjs.org/vue-cli-version-marker 相关链接: 【VUE3】【Naive UI】<NCard> 标签 【VUE3】【Naive UI】&…...

9)语法分析:半倒装和全倒装

在英语中,倒装是一种特殊的句子结构,其中主语和谓语(或助动词)的位置被颠倒。倒装分为部分倒装和全倒装两种类型,它们的主要区别在于倒装的程度和使用的场合。 1. 部分倒装 (Partial Inversion) 部分倒装是指将助动词…...

Scala关于成绩的常规操作

score.txt中的数据: 姓名,语文,数学,英语 张伟,87,92,88 李娜,90,85,95 王强,78,90,82 赵敏,92,8…...

使用Java实现度分秒坐标转十进制度的实践

目录 前言 一、度分秒的使用场景 1、表示方法 2、两者的转换方法 3、区别及使用场景 二、Java代码转换的实现 1、确定计算值的符号 2、数值的清洗 3、度分秒转换 4、转换实例 三、总结 前言 在地理信息系统(GIS)、导航、测绘等领域&#xff0c…...

根据后台数据结构,构建搜索目录树

效果图: 数据源 const data [{"categoryidf": "761525000288210944","categoryids": "766314364226637824","menunamef": "经济运行","menunames": "经济运行总览","tempn…...

食品计算—FoodSAM: Any Food Segmentation

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

2411rust,1.83

原文 1.83.0稳定版 新的常能力 此版本包括几个说明在常环境中运行代码可干的活的大型扩展.这是指编译器在编译时必须计算的所有代码:常和静项的初值,数组长度,枚举判定值,常模板参数及可从(constfn)此类环境调用的函数. 引用静.当前,除了静项的初化器式外,禁止常环境引用静…...

tomcat加载三方包顺序

共享库 tomcat支持多个webapp共享一个三方库,而不需要每个webapp都引入该三方库 tomcat加载类顺序 bootstrap:加载jvm提供的类system:加载$CATALINA_HOME/bin下的bootstrap.jar,commons-daemon.jar,tomcat-juli.jar三个包//加载$CLASSPATH…...

计算机的错误计算(一百七十一)

摘要 探讨 MATLAB 中秦九韶(Horner)多项式的错误计算。 例1. 用秦九韶(Horner)算法计算(一百零七)例1中多项式 直接贴图吧: 这样,MATLAB 给出的仍然是错误结果,因为准…...

js对于json的序列化、反序列化有哪几种方法

在JavaScript中,对JSON(JavaScript Object Notation)进行序列化(将对象转换为JSON字符串)和反序列化(将JSON字符串转换为对象)是常见的操作。以下是一些常用的方法: 序列化&#xf…...

Linux——基础命令(2) 文件内容操作

目录 ​编辑 文件内容操作 1.Vim (1)移动光标 (2)复制 (3)剪切 (4)删除 (5)粘贴 (6)替换,撤销,查找 (7&#xff…...

简单搭建qiankun的主应用和子应用并且用Docker进行服务器部署

在node18环境下,用react18创建qiankun主应用和两个子应用,react路由用V6版本,都在/main路由下访问子应用,用Dockerfile部署到腾讯云CentOS7.6服务器的8000端口进行访问,且在部署过程中进行nginx配置以进行合理的路由访…...

Python知识分享第十六天

“”" 故事7: 小明把煎饼果子技术传给徒弟的同时, 不想把独创配方传给他, 我们就要加私有. 问: 既然不想让子类用, 为什么要加私有? 答: 私有的目的不是不让子类用, 而是不让子类直接用, 而必须通过特定的 途径或者方式才能使用. 大白话: ATM机为啥要设计那么繁琐, 直接…...

管家婆财贸ERP BR045.大类存货库存数量明细表

最低适用版本: C系列 23.8 插件简要功能说明: 库存数量明细表支持按存货展示数据更多细节描述见下方详细文档 插件操作视频: 进销存类定制插件--大类存货库存数量明细表 插件详细功能文档: 应用中心增加菜单【大类存货库存数…...

Pytorch-GPU版本离线安装

最近在复现一项深度学习的工作,发现自己的pytorch是装的cpu版的(好像当时是直接加清华源,默认是cpu版本)。从官网在线下载速度太慢,还时不时断开连接,我们可以配置conda的清华源去这个问题,但是考虑到是在用…...

k8s 1.28 二进制安装与部署

第一步 :配置Linux服务器 #借助梯子工具 192.168.196.100 1C8G kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubectl、haproxy、keepalived 192.168.196.101 1C8G kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubectl、…...

如何购买网站/百度搜索资源管理平台

题目地址(559. N 叉树的最大深度) https://leetcode-cn.com/problems/maximum-depth-of-n-ary-tree/ 题目描述 给定一个 N 叉树,找到其最大深度。最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。N 叉树输入按层序遍历序列化表示,每组子节…...

西安市建设委员会的网站/南宁网站推广哪家好

1. find find pathname -options [-print -exec -ok] 让我们来看看该命令的参数: pathname find命令所查找的目录路径。例如用.来表示当前目录,用/来表示系统根目录。 -print find命令将匹配的文件输出到标准输出。 -ex…...

没有备案的网站怎么访问/网站推广优化排名教程

熔断 当某个服务调用慢或者有大量超时现象(过载),系统停止后续针对该服务的调用而直接返回,直至情况好转才恢复调用。这通常是为防止造成整个系统故障而采取的一种保护措施,也称过载保护。很多时候刚开始,可能只是出现了局部小规…...

最新网站建设常见问题/百度官网网址

目录1 UV动画1.1 滑动表面着色器1.2 让UV流动1.3 流动方向1.4 定向滑动2 无缝循环2.1 混合权重2.2 跷跷板2.3 时间偏移2.4 结合两个不同的扭曲2.5 UV跳跃2.6 分析跳跃3 动画调整3.1 平铺3.2 动画速度3.3 流动强度3.4 流偏移4 纹理化4.1 抽象水纹4.2 法线贴图4.3 导数贴图4.4 高…...

云存储wordpress/google搜索

CSS背景属性 属性描述值IEFNW3Cbackground简写属性,作用是将背景属性设置在一个声明中。 background-color background-image background-repeat background-attachment background-position 4161background-attachment设置是否背景图像是固定的或随页面其余部分滚动…...

如何在自己建设的网站上发表文章/长尾关键词有哪些

vueconf(2018hangzhou)大会刚刚过去,vue作者尤大大向我们展示了vue3.0的进展,并介绍vue3.0的一些改动,其中最令我期待的就是重写数据监听机制。 回顾vue2.x的双向数据绑定 谈起vue的双向数据绑定,我们首先能想到的就是ES5中Obje…...