当前位置: 首页 > news >正文

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

目录

    • NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元融合注意力机制时间序列预测,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

模型描述

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。

下面是这个模型的主要组成部分和工作流程的简要说明:

数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。

卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。

双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。

多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。

北方苍鹰算法优化:北方苍鹰算法是一种基于群体智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用北方苍鹰算法算法,可以提高模型的性能和收敛速度。

融合和预测:最后,通过融合CNN、BiGRU和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。

需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。

程序设计

  • 完整源码和数据获取方式NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
endpFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );fit(i ) = fobj(  x(i,:) ) ;end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测&#xff0c;含优化前后对比 目录 NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测&#xff0c;含优化前后对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介…...

【分布式】分布式缓存

一、什么是分布式缓存 分布式缓存是一种将缓存数据存储在多个节点上的缓存方案。它通过将数据分散存储在多个节点的内存中&#xff0c;以提高系统的读取性能、降低数据库压力和提高系统可扩展性。 二、分布式缓存的优点 优点明细提高性能&#xff1a;分布式缓存可以将数据缓…...

深度学习中的迁移学习:应用与实践

引言 在深度学习领域&#xff0c;迁移学习&#xff08;Transfer Learning&#xff09;是一个非常强大且日益流行的概念&#xff0c;它通过将从一个任务中学到的知识应用于另一个任务&#xff0c;能够显著加快模型训练速度并提高其泛化能力。迁移学习在许多实际应用中都得到了广…...

28.UE5实现对话系统

目录 1.对话结构的设计&#xff08;重点&#xff09; 2.NPC对话接口的实现 2.1创建类型为pawn的蓝图 2.2创建对话接口 3.对话组件的创建 4.对话的UI设计 4.1UI_对话内容 4.2UI_对话选项 4.3UI_对话选项框 5.对话组件的逻辑实现 通过组件蓝图&#xff0c;也就是下图中的…...

Redis中的分布式锁(步步为营)

分布式锁 概述 分布式锁指的是&#xff0c;所有服务中的所有线程都去获取同一把锁&#xff0c;但只有一个线程可以成功的获得锁&#xff0c;其他没有获得锁的线程必须全部等待&#xff0c;直到持有锁的线程释放锁。 分布式锁是可以跨越多个实例&#xff0c;多个进程的锁 分布…...

CentOS 7安装mysql+JDK+Tomcat完成流程

一.安装mysql 即使是新的linux服务器&#xff0c;也要先验证是否有mysql已经安装&#xff0c;如果有进行卸载原版本&#xff0c;一定要确认是否mysql已不再使用 原安装情况&#xff08;直接执行命令即可&#xff09; whereis mysql rpm -qa | grep -i mysql rpm -e perl-DBD-M…...

C++笔记之不同框架中事件循环的核心函数:io_run()、ros_spin()、app_exec()

C笔记之不同框架中事件循环的核心函数&#xff1a;io_run()、ros_spin()、app_exec() code review! 参考笔记 1.qt-C笔记之使用QtConcurrent异步地执行槽函数中的内容&#xff0c;使其不阻塞主界面 2.qt-C笔记之QThread使用 3.qt-C笔记之多线程架构模式&#xff1a;事件信号监…...

C++异常处理

目录 一、异常的概念 二、异常的使用 &#xff08;1&#xff09;异常的抛出和捕获 &#xff08;2&#xff09;异常的重新抛出 &#xff08;3&#xff09;异常安全 &#xff08;4&#xff09;异常规范 三、自定义异常体系 四、c标注异常体系 五、异常的优缺点 在之前我们…...

【数据结构】哈希 ---万字详解

unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到log_2 N&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好 的查询是&#xff0c…...

4399大数据面试题及参考答案(数据分析和数据开发)

对数据分析的理解 数据分析是一个从数据中提取有价值信息以支持决策的过程。它涵盖了数据收集、清洗、转换、建模和可视化等多个环节。 首先,数据收集是基础。这包括从各种数据源获取数据,例如数据库、文件系统、网络接口等。这些数据源可以是结构化的数据,如关系型数据库中…...

快速理解倒排索引在ElasticSearch中的作用

一.基础概念 定义&#xff1a; 倒排索引是一种数据结构&#xff0c;用来加速文本数据的搜索和检索&#xff0c;和传统的索引方式不同&#xff0c;倒排索引会被每个词汇项与包含该词汇项的文档关联起来&#xff0c;从而去实现快速的全文检索。 举例&#xff1a; 在传统的全文…...

C++趣味编程玩转物联网:基于树莓派Pico控制无源蜂鸣器-实现音符与旋律的结合

无源蜂鸣器是一种多功能的声音输出设备,与有源蜂鸣器相比,它能够通过不同频率的方波生成丰富多样的音调。本项目使用树莓派Pico开发板,通过编程控制无源蜂鸣器播放经典旋律《归来有风》。本文将详细介绍项目实现中的硬件连接、C++代码解析,以及无源蜂鸣器的工作原理。 一、…...

《RuoYi基于SpringBoot+Vue前后端分离的Java快速开发框架学习》系列博客_Part4_三模态融合

系列博客目录 文章目录 系列博客目录目标Step1:之前工作形成子组件Step2:弥补缺失的文本子组件&#xff0c;同时举例如何子组件向父组件传数据Step3:后端代码需要根据上传的文件传给python服务器Step4:python服务器进行分析 目标 实现三模态融合&#xff0c;将文本、图片、音频…...

springboot365高校疫情防控web系统(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;高校疫情防控的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为…...

STM32 USART串口数据包

单片机学习&#xff01; 目录 前言 一、数据包 二、HEX数据包 三、文本数据包 四、HEX数据包和文本数据包优缺点 4.1 HEX数据包 4.2 文本数据包 五、HEX数据包接收 六、文本数据包接收 总结 前言 本文介绍了串口数据包收发的思路和流程。 一、数据包 数据包的作用是把一个个单独…...

【LC】3232. 判断是否可以赢得数字游戏

题目描述&#xff1a; 给你一个 正整数 数组 nums。 Alice 和 Bob 正在玩游戏。在游戏中&#xff0c;Alice 可以从 nums 中选择所有个位数 或 所有两位数&#xff0c;剩余的数字归 Bob 所有。如果 Alice 所选数字之和 严格大于 Bob 的数字之和&#xff0c;则 Alice 获胜。如果…...

Linux基础学习--vi与vim

0.绪论 前面的内容基本学完了相关命令行&#xff0c;后面进行shell与shell script的学习。第一部分就是编辑器的学习&#xff0c;之前有写过vi/vim编辑器&#xff0c;但是我看了一下鸟哥这个非常详细&#xff0c;还是打算重头学习一下。 1.vi/vim的使用 一般命令模式(command…...

JavaScript 高级教程:异步编程、面向对象与性能优化

在前两篇教程中&#xff0c;我们学习了 JavaScript 的基础和进阶内容。这篇文章将带领你进入更深层次&#xff0c;学习 JavaScript 的异步编程模型、面向对象编程&#xff08;OOP&#xff09;&#xff0c;以及性能优化的技巧。这些内容对于构建复杂、流畅的前端应用至关重要。 …...

qt QToolBox详解

1、概述 QToolBox是Qt框架中的一个控件&#xff0c;它提供了一个带标签页的容器&#xff0c;用户可以通过点击标签页标题来切换不同的页面。QToolBox类似于一个带有多页选项卡的控件&#xff0c;但每个“选项卡”都是一个完整的页面&#xff0c;而不仅仅是标签。这使得QToolBo…...

翁知宜荣获“易学名师”与“国学文化传承人”称号

在2024年10月19日举行的北京第六届国学文化传承峰会上&#xff0c;翁知宜老师以其在易学界的卓越成就和对国学文化的传承与发扬&#xff0c;荣获“易学名师”和“国学文化传承人”两项荣誉称号。 翁知宜老师在易经学术竞赛中荣获第一名&#xff0c;其深厚的易学造诣和对玄学学…...

20241128解决Ubuntu20.04安装libwxgtk3.0-dev异常的问题

20241128解决Ubuntu20.04安装libwxgtk3.0-dev异常的问题 2024/11/28 16:17 缘起&#xff1a;中科创达的高通CM6125开发板的Android10的编译环境需要。 安装异常&#xff1a;rootrootrootroot-X99-Turbo:~$ rootrootrootroot-X99-Turbo:~$ sudo apt-get install libwxgtk3.0-de…...

sql分类

SQL&#xff08;Structured Query Language&#xff09;是一种用于管理和操作关系数据库管理系统&#xff08;RDBMS&#xff09;的编程语言。SQL 可以分为几个主要类别&#xff0c;每个类别都有其特定的用途和功能。以下是 SQL 的主要分类&#xff1a; 1. 数据定义语言&#x…...

stm32里一个定时器可以提供多路信号吗?

在STM32中&#xff0c;一个定时器通常只能提供一组信号&#xff08;如输出PWM波形、定时中断等&#xff09;。但是&#xff0c;定时器的多个通道可以提供不同的信号。例如&#xff0c;STM32的定时器可以通过不同的输出通道产生多种PWM信号&#xff0c;每个通道可以配置为不同的…...

Java安全—原生反序列化重写方法链条分析触发类

前言 在Java安全中反序列化是一个非常重要点&#xff0c;有原生态的反序列化&#xff0c;还有一些特定漏洞情况下的。今天主要讲一下原生态的反序列化&#xff0c;这部分内容对于没Java基础的来说可能有点难&#xff0c;包括我。 序列化与反序列化 序列化&#xff1a;将内存…...

2023考研王道计算机408数据结构+操作系统+计算机组成原理+计算机网络

from: https://blog.csdn.net/weixin_46118419/article/details/125611299 写得很好&#xff01; 轻重缓急 2023考研计算机408【王-道计算机408】数据结构操作系统计算机组成原理计算机网络 网盘-链接&#xff1a;https://pan.baidu.com/s/13JraxUYwNVPeupdzprx5hA?pwd5h3d 提…...

YOLOv8-ultralytics-8.2.103部分代码阅读笔记-files.py

files.py ultralytics\utils\files.py 目录 files.py 1.所需的库和模块 2.class WorkingDirectory(contextlib.ContextDecorator): 3.def spaces_in_path(path): 4.def increment_path(path, exist_okFalse, sep"", mkdirFalse): 5.def file_age(path__fi…...

「Mac畅玩鸿蒙与硬件34」UI互动应用篇11 - 颜色选择器

本篇将带你实现一个颜色选择器应用。用户可以从预设颜色中选择&#xff0c;或者通过输入颜色代码自定义颜色来动态更改界面背景。该应用展示了如何结合用户输入、状态管理和界面动态更新的功能。 关键词 UI互动应用颜色选择器状态管理用户输入界面动态更新 一、功能说明 颜色…...

ELK(Elasticsearch + logstash + kibana + Filebeat + Kafka + Zookeeper)日志分析系统

文章目录 前言架构软件包下载 一、准备工作1. Linux 网络设置2. 配置hosts文件3. 配置免密登录4. 设置 NTP 时钟同步5. 关闭防火墙6. 关闭交换分区7. 调整内存映射区域数限制8. 调整文件、进程、内存资源限制 二、JDK 安装1. 解压软件2. 配置环境变量3. 验证软件 三、安装 Elas…...

07.ES11 08.ES12

7.1、Promise.allSettled 调用 allsettled 方法&#xff0c;返回的结果始终是成功的&#xff0c;返回的是promise结果值 <script>//声明两个promise对象const p1 new Promise((resolve, reject) > {setTimeout(() > {resolve("商品数据 - 1");}, 1000)…...

linux一键部署apache脚本

分享一下自己制作的一键部署apache脚本&#xff1a; 脚本已和当前文章绑定&#xff0c;请移步下载&#xff08;免费&#xff01;免费&#xff01;免费&#xff01;&#xff09; &#xff08;单纯的分享&#xff01;&#xff09; 步骤&#xff1a; 将文件/内容上传到终端中 …...

盱眙有做公司网站的吗/百度关键词首页排名怎么上

再做考试系统的时候给题目标记时&#xff0c;点击之后修改了值但是没有修改样式&#xff0c; 就算值修改了&#xff0c;也不能立即刷新&#xff0c;需要点击下一题之后才可以&#xff0c;查阅资源后发现&#xff0c;vue文档中明确的注意事项就是&#xff1a;由于 JavaScript 的…...

宝塔wordpress搭建/百度知道免费提问

手机服务器超时 内容精选换一换本章节介绍如何通过控制台重启服务器。重启服务器时&#xff0c;可以批量更换云手机镜像。重启服务器会造成云手机断开连接&#xff0c;请提前保存数据。登录管理控制台。在管理控制台左上角&#xff0c;选择待操作服务器所在的区域。在服务列表页…...

网络销售网站外包/常州seo招聘

原来STL我还是有很多不知道的地方 STL 采用的算法是&#xff1a; 当数组长度 < 3时&#xff0c; 采用插入排序。 当长度 > 3时&#xff0c; 采用快排 Partition 的思想&#xff0c;也就是说类似快速排序&#xff08;这里不妨假设是降序排列&#xff09;&#xff1b; 快排…...

青岛免费网站建设/培训机构哪家好

测试的时候碰到很多问题&#xff0c;Mark一下&#xff0c;以免忘记。 在 itune 内注册项目的测试帐号的时候&#xff0c;一定要注意&#xff0c;地区必须设置成china&#xff0c;否则因为地区不一样导致无法连接到itune store就非常悲催了。 新的帐号必须遵循以下步骤&#xff…...

川沙网站建设/百度安装应用

导 读&#xff1a;server.htmlencode 和 server.urlencode 是asp中很常用的函数&#xff0c;在asp.net中也有类似的函数&#xff1a;htmlencode 和 urlencode (注意大小写)以下用实例来进行介绍。server.htmlencode and server.urlencode are very common functions used by as…...

java web开发网站开发/网络营销ppt讲解

一.线程组 线程组主要包含三个参数&#xff1a;线程数、准备时长(Ramp-Up Period(in seconds))、循环次数。 线程数&#xff1a;虚拟用户数。一个虚拟用户占用一个进程或线程。设置多少虚拟用户数在这里也就是设置多少个线程数。 准备时长&#xff08;秒&#xff09;&#xff1…...