当前位置: 首页 > news >正文

网站如何添加数据/关键词排名查询工具有什么作用?

网站如何添加数据,关键词排名查询工具有什么作用?,上海高端建设网站,学做网站教程视频二维泊松方程的通俗理解 二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为: ∇ 2 ϕ ( x , y ) f ( x , y ) \nabla^2 \phi(x, y) f(x, y) ∇2ϕ(x,y)f(x,y) 其…

二维泊松方程的通俗理解

二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为:

∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

其中:

  • ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是需要求解的标量场,例如 TIE 方程中的相位分布。
  • f ( x , y ) f(x, y) f(x,y) 是已知的源项,表示某种驱动或者分布,如光强的变化率。
物理直观:

二维泊松方程的物理意义可以通过类比来理解:

  • 热传导 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示温度分布, f ( x , y ) f(x, y) f(x,y) 是热源强度分布。
  • 重力势 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 表示引力势, f ( x , y ) f(x, y) f(x,y) 是质量密度分布。
  • 光学相位:在 TIE 中, ϕ ( x , y ) \phi(x, y) ϕ(x,y) 是光场的相位分布, f ( x , y ) f(x, y) f(x,y) 是由光强变化产生的“驱动力”。

换句话说,泊松方程将一种“局部变化”( ∇ 2 ϕ \nabla^2 \phi 2ϕ)与“全局驱动力”( f ( x , y ) f(x, y) f(x,y))联系起来。


TIE 转化为泊松方程的形式

对于 TIE 方程:

∂ I ( x , y , z ) ∂ z = − λ 2 π ∇ ⊥ ⋅ ( I ( x , y , z ) ∇ ⊥ ϕ ( x , y , z ) ) \frac{\partial I(x, y, z)}{\partial z} = -\frac{\lambda}{2\pi} \nabla_\perp \cdot \left( I(x, y, z) \nabla_\perp \phi(x, y, z) \right) zI(x,y,z)=2πλ(I(x,y,z)ϕ(x,y,z))

可以将其重写为泊松方程的形式:

∇ ⊥ ⋅ ( I ( x , y ) ∇ ⊥ ϕ ( x , y ) ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot \left( I(x, y) \nabla_\perp \phi(x, y) \right) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} (I(x,y)ϕ(x,y))=λ2πzI

g ( x , y ) = I ( x , y ) ∇ ⊥ ϕ ( x , y ) g(x, y) = I(x, y) \nabla_\perp \phi(x, y) g(x,y)=I(x,y)ϕ(x,y) 引入后,有:
∇ ⊥ ⋅ g ( x , y ) = − 2 π λ ∂ I ∂ z \nabla_\perp \cdot g(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} g(x,y)=λ2πzI

进一步转化为标准泊松方程形式:
∇ 2 ϕ ( x , y ) = f ( x , y ) I ( x , y ) \nabla^2 \phi(x, y) = \frac{f(x, y)}{I(x, y)} 2ϕ(x,y)=I(x,y)f(x,y)
其中 f ( x , y ) = − 2 π λ ∂ I ∂ z f(x, y) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z} f(x,y)=λ2πzI


傅里叶变换求解泊松方程

1. 为什么用傅里叶变换解泊松方程?

泊松方程涉及 空间梯度(如 ∇ 2 \nabla^2 2,即拉普拉斯算子)。傅里叶变换在数学上有一个重要特性:

  • 微分变为乘法:在频域中,拉普拉斯算子 ∇ 2 \nabla^2 2 对应的是空间频率平方的乘积 − k x 2 − k y 2 -k_x^2 - k_y^2 kx2ky2
  • 这使得方程从微分方程变成代数方程,简化了求解过程。
2. 傅里叶变换的过程

泊松方程:
∇ 2 ϕ ( x , y ) = f ( x , y ) \nabla^2 \phi(x, y) = f(x, y) 2ϕ(x,y)=f(x,y)

对两边做傅里叶变换(记为 F \mathcal{F} F),得:
F ( ∇ 2 ϕ ) = F ( f ) \mathcal{F}(\nabla^2 \phi) = \mathcal{F}(f) F(2ϕ)=F(f)

利用傅里叶变换的性质, F ( ∇ 2 ϕ ) = − ( k x 2 + k y 2 ) ⋅ F ( ϕ ) \mathcal{F}(\nabla^2 \phi) = -(k_x^2 + k_y^2) \cdot \mathcal{F}(\phi) F(2ϕ)=(kx2+ky2)F(ϕ),因此:
− ( k x 2 + k y 2 ) Φ ( k x , k y ) = F ( k x , k y ) -(k_x^2 + k_y^2) \Phi(k_x, k_y) = F(k_x, k_y) (kx2+ky2)Φ(kx,ky)=F(kx,ky)

其中:

  • Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky):相位 ϕ ( x , y ) \phi(x, y) ϕ(x,y) 在频域中的表示。
  • F ( k x , k y ) F(k_x, k_y) F(kx,ky) f ( x , y ) f(x, y) f(x,y) 在频域中的表示。

解得:
Φ ( k x , k y ) = − F ( k x , k y ) k x 2 + k y 2 \Phi(k_x, k_y) = -\frac{F(k_x, k_y)}{k_x^2 + k_y^2} Φ(kx,ky)=kx2+ky2F(kx,ky)

3. 避免分母为零的问题

k x 2 + k y 2 = 0 k_x^2 + k_y^2 = 0 kx2+ky2=0 时(即零频点处),分母为零。这通常对应光场整体的平均相位,这一部分可以忽略或通过设定边界条件解决。例如,直接将零频点处的值置为零:

Φ ( 0 , 0 ) = 0 \Phi(0, 0) = 0 Φ(0,0)=0

4. 逆傅里叶变换回到空间域

通过逆傅里叶变换( F − 1 \mathcal{F}^{-1} F1),将 Φ ( k x , k y ) \Phi(k_x, k_y) Φ(kx,ky) 转换回相位分布:
ϕ ( x , y ) = F − 1 ( Φ ( k x , k y ) ) \phi(x, y) = \mathcal{F}^{-1}(\Phi(k_x, k_y)) ϕ(x,y)=F1(Φ(kx,ky))


总结:为什么可以这么做

  1. 傅里叶变换的优点

    • 将复杂的微分操作转化为频域中的简单乘法,显著简化了解泊松方程的计算难度。
    • 频域方法特别适合求解涉及大范围数据的连续问题,如图像中的相位分布。
  2. 数学上的严谨性

    • 傅里叶变换和逆变换是完全可逆的,保证了从空间域到频域再回到空间域的信息一致性。
  3. 频率分析的物理意义

    • 相位梯度和强度变化在本质上是一种空间频率特征,而傅里叶变换就是对这种频率信息的自然表示。

通过傅里叶变换解泊松方程,不仅是数值上的优化,更是利用了物理和数学上的深层对应关系。

相关文章:

TIE算法具体求解-为什么是泊松方程和傅里叶变换

二维泊松方程的通俗理解 二维泊松方程 是偏微分方程的一种形式,通常用于描述空间中某个标量场(如位相场、电势场)的分布规律。其一般形式为: ∇ 2 ϕ ( x , y ) f ( x , y ) \nabla^2 \phi(x, y) f(x, y) ∇2ϕ(x,y)f(x,y) 其…...

postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等

在Postman中,您可以使用内置的动态变量和编写脚本的方式来获取随机数、唯一ID、时间日期以及截取指定位数的字符。以下是具体的操作方法: 一、postman中获取随机数、唯一ID、时间日期(包括当前日期增减)截取指定位数的字符等 获取…...

【计算机网络】实验3:集线器和交换器的区别及交换器的自学习算法

实验 3:集线器和交换器的区别及交换器的自学习算法 一、 实验目的 加深对集线器和交换器的区别的理解。 了解交换器的自学习算法。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、熟悉集线器和交换器的区别 (1) 第一步:构建网络…...

flink学习(14)—— 双流join

概述 Join:内连接 CoGroup:内连接,左连接,右连接 Interval Join:点对面 Join 1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。 2、Join 可以支持处理时间(processing time)和事件时…...

HTTP协议详解:从HTTP/1.0到HTTP/3的演变与优化

深入浅出:从头到尾全面解析HTTP协议 一、HTTP协议概述 1.1 HTTP协议简介 HTTP(HyperText Transfer Protocol,超文本传输协议)是互联网上应用最广泛的通信协议之一。它用于客户端与服务器之间的数据传输,尤其是在Web…...

张量并行和流水线并行在Transformer中的具体部位

目录 张量并行和流水线并行在Transformer中的具体部位 一、张量并行 二、流水线并行 张量并行和流水线并行在Transformer中的具体部位 张量并行和流水线并行是Transformer模型中用于提高训练效率的两种并行策略。它们分别作用于模型的不同部位,以下是对这两种并行的具体说…...

WEB开发: 丢掉包袱,拥抱ASP.NET CORE!

今天的 Web 开发可以说进入了一个全新的时代,前后端分离、云原生、微服务等等一系列现代技术架构应运而生。在这个背景下,作为开发者,你一定希望找到一个高效、灵活、易于扩展且具有良好性能的框架。那么,ASP.NET Core 显然是一个…...

【论文阅读】Federated learning backdoor attack detection with persistence diagram

目的:检测联邦学习环境下,上传上来的模型是不是恶意的。 1、将一个模型转换为|L|个PD,(其中|L|为层数) 如何将每一层转换成一个PD? 为了评估第𝑗层的激活值,我们需要𝑐个输入来获…...

Gooxi Eagle Stream 2U双路通用服务器:性能强劲 灵活扩展 稳定易用

人工智能的高速发展开启了飞轮效应,实施数字化变革成为了企业的一道“抢答题”和“必答题”,而数据已成为现代企业的命脉。以HPC和AI为代表的新业务就像节节攀高的树梢,象征着业务创新和企业成长。但在树梢之下,真正让企业保持成长…...

【计算机网络】实验2:总线型以太网的特性

实验 2:总线型以太网的特性 一、 实验目的 加深对MAC地址,IP地址,ARP协议的理解。 了解总线型以太网的特性(广播,竞争总线,冲突)。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实…...

如何在Spark中使用gbdt模型分布式预测

这目录 1 训练gbdt模型2 第三方包python环境打包3 Spark中使用gbdt模型3.1 spark配置文件3.2 主函数main.py 4 spark任务提交 1 训练gbdt模型 我们可以基于lightgbm快速的训练一个gbdt模型,训练相对比较简单,只要把训练样本处理好,几行代码可…...

Qt-5.14.2 example

官方历程很丰富,modbus、串口、chart图表、3D、视频 共享方便使用 Building and Running an Example You can test that your Qt installation is successful by opening an existing example application project. To run an example application on an Android …...

virtualbox给Ubuntu22创建共享文件夹

1.在windows上的操作,创建共享文件夹Share 2.Ubuntu22上的操作,创建共享文件夹LinuxShare 3.在virtualbox虚拟机设置里,设置共享文件夹 共享文件夹路径:选择Windows系统中你需要共享的文件夹 共享文件夹名称:挂载至wi…...

GPT打字机效果—— fetchEventSouce进行sse流式请求

EventStream基本用法 与 WebSocket 不同的是,服务器发送事件是单向的。数据消息只能从服务端到发送到客户端(如用户的浏览器)。这使其成为不需要从客户端往服务器发送消息的情况下的最佳选择。 const evtSource new EventSource(“/api/v1/…...

SpringBoot 在线家具商城:设计考量与实现细节聚焦

第4章 系统设计 市面上设计比较好的系统都有一个共同特征,就是主题鲜明突出。通过对页面简洁清晰的布局,让页面的内容,包括文字语言,或者视频图片等元素可以清晰表达出系统的主题。让来访用户无需花费过多精力和时间找寻需要的内容…...

每日速记10道java面试题07

其他资料: 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 目录 1.线程的生命周期在j…...

前端面试热门题(二)[html\css\js\node\vue)

Vue 性能优化的方法 Vue 性能优化的方法多种多样,以下是一些常用的策略: 使用v-show替换v-if:v-show是通过CSS控制元素的显示与隐藏,而v-if是通过操作DOM来控制元素的显示与隐藏,频繁操作DOM会导致性能下降。因此&am…...

mvc基础及搭建一个静态网站

mvc asp.net core mvc环境 .net8vscode * Asp.Net Core 基础* .net8* 前辈* .net 4.9 非跨平台版本 VC* 跨平台版本* 1.0* 2.0* 2.1* 3.1* 5* 语言* C#* F# * Visual Basic* 框架* web应用* asp应用* WebFrom* mvc应用* 桌面应用* Winform* WPF* Web Api api应用或者叫服务* …...

AOSP的同步问题

repo sync同步时提示出错: error: .repo/manifests/: contains uncommitted changesRepo command failed due to the following UpdateManifestError errors: contains uncommitted changes解决方法: 1、cd 进入.repo/manifests cd .repo/manifests2、执行如下三…...

HarmonyOS4+NEXT星河版入门与项目实战(23)------实现手机游戏摇杆功能

文章目录 1、案例效果2、案例实现1、代码实现2、代码解释4、总结1、案例效果 2、案例实现 1、代码实现 代码如下(示例): import router from @ohos.router import {ResizeDirection } from @ohos.UiTest import curves...

Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计)

Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计) 逻辑回归(Logistic Regression,LR)逻辑回归的基本思想逻辑回归模型逻辑回归的目标最大似然估计优化方法 逻辑回归…...

Vue文字转语音实现

在开发流程中,面对语音支持的需求,小规模语音内容或许可以通过预处理后播放来轻松应对,但当涉及大量语音时,这一方法就显得繁琐低效了。为此,智慧的开发者们总能找到便捷的解决方案——利用Web技术实现语音播放&#x…...

Docker快速部署RabbitMq

在外网服务器拉取镜像 docker pull arm64v8/rabbitmq:3.8.9-management或者拉去我的服务器的 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/linux_arm64_rabbitmq:3.8.9-management重新命名 docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/lin…...

glog在vs2022 hello world中使用

准备工作 设置dns为阿里云dns 223.5.5.5,下载cmake,vs2022,git git clone https://github.com/google/glog.git cd glog mkdir build cd build cmake .. 拷贝文件 新建hello world并设置 设置预处理器增加GLOG_USE_GLOG_EXPORT;GLOG_NO_AB…...

[241129] Docker Desktop 4.36 发布:企业级管理功能、WSL 2 增强 | Smile v4.0.0 发布

目录 Docker Desktop 4.36 发布:企业级管理功能、WSL 2 和 ECI 增强Smile v4.0.0 发布!Java 机器学习库迎来重大升级 Docker Desktop 4.36 发布:企业级管理功能、WSL 2 和 ECI 增强 Docker Desktop 4.36 带来了强大的更新,简化了…...

CentOS使用chrony服务进行时间同步源设置脚本

CentOS使用chrony服务进行时间同步源设置脚本 #!/bin/bash# Created: 2024-11-26 # Function: Check and Set OS time sync source to 10.0.11.100 # FileName: centos_set_time_source_to_ad.sh # Creator: Anster # Usage: # curl http://webserver-ip/scripts/centos_set…...

Git仓库迁移到远程仓库(源码、分支、提交)

单个迁移仓库 一、迁移仓库 1.准备工作 > 手动在电脑创建一个临时文件夹,CMD进入该目录 > 远程仓库上创建一个同名的空仓库 2.CMD命令:拉取旧Git仓库(包含提交、分支、源码) $ git clone --bare http://git.domain.cn/…...

【算法刷题指南】优先级队列

🌈个人主页: 南桥几晴秋 🌈C专栏: 南桥谈C 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据…...

使用pymupdf提取PDF文档中的文字和其颜色

最近我在捣鼓一个PDF文件,想把它里面的文字和文字颜色给提取出来。后来发现有个叫pymupdf的库能搞定这事儿。操作起来挺简单的,pymupdf的示例文档里就有现成的代码可以参考。 how-to-extract-text-with-color 我本地的测试代码如下: impor…...

贪心算法题

0简介 0.1什么是贪心算法 贪心算法是用贪婪(鼠目寸光)的角度,找到解决问题的最优解 贪心策略:(从局部最优 --> 整体最优) 1把解决问题的过程分为若干步; 2解决每一个问题时,都选择当前“看上去”最优的解法; 3“…...