当前位置: 首页 > news >正文

切比雪夫不等式:方差约束下的概率估计

切比雪夫不等式:方差约束下的概率估计

背景

在概率分析中,切比雪夫不等式是一个常用的工具,它通过引入随机变量的 方差信息,给出了偏离均值的概率界限。这一不等式是对 马尔科夫不等式 的自然扩展,结合了更丰富的分布信息。通过它,我们可以更精确地描述随机变量的偏差行为。


核心思想

切比雪夫不等式旨在刻画以下概率:
P ( ∣ X − μ ∣ ≥ t ) \mathbb{P}(|X - \mu| \geq t) P(Xμt)
其中, μ = E [ X ] \mu = \mathbb{E}[X] μ=E[X] 是随机变量 X X X 的期望, t > 0 t > 0 t>0 是阈值。为了进行更紧密的估计,引入 X X X 的方差 σ 2 = E [ ( X − μ ) 2 ] \sigma^2 = \mathbb{E}[(X - \mu)^2] σ2=E[(Xμ)2]

切比雪夫不等式表明:
P ( ∣ X − μ ∣ ≥ t ) ≤ σ 2 t 2 . \mathbb{P}(|X - \mu| \geq t) \leq \frac{\sigma^2}{t^2}. P(Xμt)t2σ2.

这一结果的直观意义是:随机变量偏离均值的概率与方差成正比,与偏差阈值的平方成反比。当 t t t 增大时,偏离概率迅速下降。


从马尔科夫不等式的扩展到切比雪夫不等式

马尔科夫不等式扩展回顾

回顾马尔科夫不等式扩展:给定一个非负随机变量 X X X 和一个单调递增的非负函数 g g g,我们有:
P ( X ≥ t ) = P ( g ( X ) ≥ g ( t ) ) ≤ E [ g ( X ) ] g ( t ) , g ( t ) > 0. \mathbb{P}(X \geq t) = \mathbb{P}(g(X) \geq g(t)) \leq \frac{\mathbb{E}[g(X)]}{g(t)}, \quad g(t) > 0. P(Xt)=P(g(X)g(t))g(t)E[g(X)],g(t)>0.
这一形式可以推广到许多场景,具体证明可以参考我的博客 马尔科夫不等式扩展:非线性函数下的概率上界。

切比雪夫不等式的推导

在切比雪夫不等式中,我们让随机变量的偏差 Z = ∣ X − μ ∣ Z = |X - \mu| Z=Xμ,并选择 g ( x ) = x 2 g(x) = x^2 g(x)=x2。此时:
P ( ∣ X − μ ∣ ≥ t ) = P ( Z ≥ t ) = P ( g ( Z ) ≥ g ( t ) ) ≤ E [ g ( Z ) ] g ( t ) . \mathbb{P}(|X - \mu| \geq t) = \mathbb{P}(Z \geq t) = \mathbb{P}(g(Z) \geq g(t)) \leq \frac{\mathbb{E}[g(Z)]}{g(t)}. P(Xμt)=P(Zt)=P(g(Z)g(t))g(t)E[g(Z)].

对于 g ( x ) = x 2 g(x) = x^2 g(x)=x2,我们有:
g ( Z ) = Z 2 = ( X − μ ) 2 , g ( t ) = t 2 . g(Z) = Z^2 = (X - \mu)^2, \quad g(t) = t^2. g(Z)=Z2=(Xμ)2,g(t)=t2.

因此:
P ( ∣ X − μ ∣ ≥ t ) ≤ E [ ( X − μ ) 2 ] t 2 . \mathbb{P}(|X - \mu| \geq t) \leq \frac{\mathbb{E}[(X - \mu)^2]}{t^2}. P(Xμt)t2E[(Xμ)2].

注意到 E [ ( X − μ ) 2 ] \mathbb{E}[(X - \mu)^2] E[(Xμ)2] 就是 X X X 的方差 σ 2 \sigma^2 σ2,最终得到:
P ( ∣ X − μ ∣ ≥ t ) ≤ σ 2 t 2 . \mathbb{P}(|X - \mu| \geq t) \leq \frac{\sigma^2}{t^2}. P(Xμt)t2σ2.


例子:投资收益的概率估算

假设你投资一个项目 X X X,它的年平均收益是 5 % 5\% 5%(即 E [ X ] = 0.05 \mathbb{E}[X] = 0.05 E[X]=0.05),年收益的方差为 Var ( X ) = σ 2 = 0.01 \text{Var}(X) = \sigma^2 = 0.01 Var(X)=σ2=0.01。你想知道收益超过期望值 50 % 50\% 50%(即 ∣ X − E [ X ] ∣ ≥ 0.5 |X - \mathbb{E}[X]| \geq 0.5 XE[X]0.5)的概率有多大。

使用马尔科夫不等式估算

首先,根据前面马尔科夫不等式,我们可以得到结果
P ( X ≥ 0.5 ) ≤ 0.05 0.5 = 0.1. \mathbb{P}(X \geq 0.5) \leq \frac{0.05}{0.5} = 0.1. P(X0.5)0.50.05=0.1.
即,收益超过 50 % 50\% 50% 的概率不会超过 10 % 10\% 10%

马尔科夫不等式:一个快速的概率上界工具-CSDN博客

使用切比雪夫不等式估算

切比雪夫不等式考虑了收益的偏离范围,即:
P ( ∣ X − E [ X ] ∣ ≥ t ) ≤ σ 2 t 2 . \mathbb{P}(|X - \mathbb{E}[X]| \geq t) \leq \frac{\sigma^2}{t^2}. P(XE[X]t)t2σ2.
这里的 t t t 是收益偏离期望值的阈值,因此 t = 0.5 − 0.05 = 0.45 t = 0.5 - 0.05 = 0.45 t=0.50.05=0.45,代入 σ 2 = 0.01 \sigma^2 = 0.01 σ2=0.01
P ( ∣ X − E [ X ] ∣ ≥ 0.45 ) ≤ 0.01 0.4 5 2 ≈ 0.049. \mathbb{P}(|X - \mathbb{E}[X]| \geq 0.45) \leq \frac{0.01}{0.45^2} \approx 0.049. P(XE[X]0.45)0.4520.010.049.
即,收益偏离 50 % 50\% 50% 的概率不会超过 4.9 % 4.9\% 4.9%


对比与分析

  1. 概率上界的精度

    • 使用马尔科夫不等式得到的概率上界是 10 % 10\% 10%,而使用切比雪夫不等式后,概率上界下降到了 4.9 % 4.9\% 4.9%
    • 切比雪夫不等式利用了方差信息,给出了更紧的概率界限。
  2. 适用范围

    • 马尔科夫不等式只需要知道随机变量的均值,适用于所有非负随机变量,因此更通用。
    • 切比雪夫不等式需要额外的方差信息,因此对分布的要求更高,但界限更精确。
  3. 解释意义

    • 马尔科夫不等式的结果相对宽松,因为它只利用了均值信息,假设更大的分布范围。
    • 切比雪夫不等式通过引入方差,更好地描述了随机变量的波动特性。

特点与不足

优点
  1. 利用方差信息:相比马尔科夫不等式,切比雪夫不等式通过引入方差,得到了更紧的概率上界。
  2. 适用性广:只需知道均值和方差,无需任何额外的分布假设。
  3. 直观性:通过与方差和偏差的关系,定量描述了概率的变化。
缺点
  1. 上界仍然宽松:实际概率往往远小于不等式给出的界限。
  2. 不考虑分布形状:切比雪夫不等式无法充分利用随机变量的分布信息。

进一步延伸

  • 更紧的界限:如果随机变量具有更详细的信息(如分布的对称性或独立性),可以使用更高级的不等式,如赫夫丁不等式切尔诺夫界
  • 特殊分布的分析:对于某些特定分布,如正态分布,可以通过分布函数直接计算偏差概率,从而获得更精确的估计。

小结

切比雪夫不等式是从马尔科夫不等式出发,通过引入方差,提供了一个更紧密的概率界限。它在随机变量分析中具有广泛的应用,是概率界限工具箱中的一件基础工具。然而,在实际场景中,如果能够获取更多的分布特征,使用更高级的不等式往往能带来更好的结果。

在后续内容中,我们将进一步探讨如 Chernoff Bound(切尔诺夫界) 这样的工具,如何实现对偏差概率的更精确控制。

相关文章:

切比雪夫不等式:方差约束下的概率估计

切比雪夫不等式:方差约束下的概率估计 背景 在概率分析中,切比雪夫不等式是一个常用的工具,它通过引入随机变量的 方差信息,给出了偏离均值的概率界限。这一不等式是对 马尔科夫不等式 的自然扩展,结合了更丰富的分布…...

使用CancellationTokenSource来控制长时间sql查询中断

前端 <!-- 透明的覆盖层&#xff0c;显示在页面上方&#xff0c;包含进度条 --><Grid Visibility"{Binding IsLoading}" Background"Transparent" HorizontalAlignment"Stretch" VerticalAlignment"Stretch" ZIndex"1&…...

小红薯最新x-s 算法补环境教程12-06更新(下)

在上一篇文章中已经讲了如何去定位x-s生成的位置&#xff0c;本篇文章就直接开始撸代码吧 如果没看过的话可以看&#xff1a;小红薯最新x-s算法分析12-06&#xff08;x-s 56&#xff09;&#xff08;上&#xff09;-CSDN博客 1、获取加密块代码 首先来到参数生成的位置&…...

wazuh-modules-sca

wazuh中安全配置评估模块主线程执行wm_sca_main最后在wm_sca_start中循环执行&#xff0c;不会返回 // Module main function. It wont return #ifdef WIN32 DWORD WINAPI wm_sca_main(void *arg) {wm_sca_t *data (wm_sca_t *)arg; #else void * wm_sca_main(wm_sca_t * dat…...

Uniapp的App环境下使用Map获取缩放比例

概述 目前我试过的就是你用vue后缀是拿不到比例的你可以用nvue当然uniapp的uvue应该是更加可以的我使用的是高德所以你得在高德的后台声请原生的Android的key才可以如果是vue3的开发模式的话不用使用this来获取当前对象使用scale对象来接受和改变缩放比例会比较友好然后直接走…...

微信小程序配置less并使用

1.在VScode中下载Less插件 2.在微信小程序中依次点击如下按钮 选择 从已解压的扩展文件夹安装… 3.选中刚在vscode中下载安装的插件文件 如果没有修改过插件的安装目录&#xff0c;一般是在c盘下C:\用户\用户名.vscode\extensions\mrcrowl.easy-less-2.0.2 我的路径是&#xf…...

“全面支持公路数字化转型升级四大任务”视频孪生解决方案

数字经济的加速布局&#xff0c;对交通领域数字化转型、智能化升级提出明确要求。2024年上半年&#xff0c;为深入贯彻落实中共中央、国务院关于加快建设交通强国、数字中国等决策部署&#xff0c;推进公路水路交通基础设施数字转型、智能升级、融合创新&#xff0c;加快发展新…...

顶顶通电话机器人开发接口对接大语言模型之实时流TTS对接介绍

大语言模型一般都是流式返回文字&#xff0c;如果等全部文字返回了一次性去TTS&#xff0c;那么延迟会非常严重&#xff0c;常用的方法就是通过标点符号断句&#xff0c;返回了一句话就提交给TTS。随着流TTS的出现&#xff0c;就可以直接把大模型返回的文字灌给流TTS&#xff0…...

P3379 【模板】最近公共祖先(LCA)

【模板】最近公共祖先&#xff08;LCA&#xff09; https://www.luogu.com.cn/problem/P3379 题目描述 如题&#xff0c;给定一棵有根多叉树&#xff0c;请求出指定两个点直接最近的公共祖先。 输入格式 第一行包含三个正整数 N , M , S N,M,S N,M,S&#xff0c;分别表示…...

2030. gitLab A仓同步到B仓

文章目录 1 A 仓库备份 到 B 仓库2 B 仓库修改main分支的权限 1 A 仓库备份 到 B 仓库 #!/bin/bash# 定义变量 REPO_DIR"/home/xhome/opt/git_sync/zz_xx_xx" # 替换为你的本地库A的实际路径 REMOTE_ORIGIN"http://192.168.1.66:8181/zzkj_software/zz_xx_xx.…...

网易博客旧文-----如何在WINDOWS下载安卓(android)源代码并和eclipse做关联

如何在WINDOWS下载安卓&#xff08;android&#xff09;源代码并和eclipse做关联 2013-02-05 17:27:16| 分类&#xff1a; 安卓开发 | 标签&#xff1a; |举报 |字号大中小 订阅 编写安卓程序时&#xff0c;有时想看看安卓某些类的实现&#xff0c;但默认情况下环境是不带的。…...

MATLAB中axes函数用法

目录 语法 说明 示例 在图窗中定位多个坐标区 将坐标区设置为当前坐标区 在选项卡上创建坐标区 axes函数的功能是创建笛卡尔坐标区。 语法 axes axes(Name,Value) axes(parent,Name,Value) ax axes(___) axes(cax) 说明 axes 在当前图窗中创建默认的笛卡尔坐标区&…...

构建 Java Web 应用程序:实现简单的增删查改(Mysql)

简介 本教程将指导您如何使用Java Servlet和JSP技术构建一个简单的Web应用程序。该应用程序将包括用户注册、登录、注销&#xff08;删除用户信息&#xff09;、修改密码以及根据性别查询用户信息等功能。我们将使用MySQL数据库来存储用户数据。 环境准备 Java Development …...

3d行政区划-中国地图

前言 技术调研&#xff1a;做底代码平台的3d行政区组件 写的demo 效果图&#xff1a; 实现的功能项 地标、打点、飞线、three.js 3d 中国地图的一些基础配置补充 geo中国地图文件获取 其他项:包 "dependencies": {"d3": "^7.9.0","d3-…...

适合存储时序数据的数据库和存储系统

时序数据的存储通常要求高效地处理大量按时间排序的数据&#xff0c;同时支持快速查询、实时分析和高并发写入。以下是一些适合存储时序数据的数据库和存储系统&#xff1a; 1. InfluxDB 概述&#xff1a;InfluxDB 是一个开源的时序数据库&#xff0c;专门为处理时序数据而设…...

dolphinscheduler集群服务一键安装启动实现流程剖析

1.dolphinscheduler的安装部署 dolphinscheduler服务的安装部署都是非常简单的&#xff0c;因为就服务本身而言依赖的服务并不多。 mysql / postgresql。由于需要进行元数据及业务数据的持久化存储所以需要依赖于数据库服务&#xff0c;数据库服务支持mysql、postgresql等&am…...

深入了解Linux —— 学会使用vim编辑器

前言 学习了Linux中的基本指令也理解了权限这一概念&#xff0c;但是我们怎么在Linux下写代码呢&#xff1f; 本篇就来深入学习Linux下的vim编辑器&#xff1b;学会在Linux下写代码。 软件包管理器 1. 软件包&#xff1f; 在Linux下安装软件&#xff0c;通常是下载程序的源码…...

C05S01-Web基础和HTTP协议

一、Web基础 1. Web相关概念 1.1 URL URL&#xff08;Uniform Resource Locator&#xff0c;统一资源定位符&#xff09;&#xff0c;是一种用于在互联网上标识和定位资源的标准化地址&#xff0c;提供了一种访问互联网上特定资源的方法。URL的基本格式如下所示&#xff1a;…...

MIT工具课第六课任务 Git基础练习题

如果您之前从来没有用过 Git&#xff0c;推荐您阅读 Pro Git 的前几章&#xff0c;或者完成像 Learn Git Branching 这样的教程。重点关注 Git 命令和数据模型相关内容&#xff1b; 相关内容整理链接&#xff1a;Linux Git新手入门 git常用命令 Git全面指南&#xff1a;基础概念…...

计算机网络安全

从广义来说&#xff0c;凡是涉及到网络上信息的机密性、报文完整性、端点鉴别等技术和理论都是网络安全的研究领域。 机密性指仅有发送方和接收方能理解传输报文的内容&#xff0c;而其他未授权用户不能解密&#xff08;理解&#xff09;该报文报文完整性指报文在传输过程中不…...

Delphi 实现键盘模拟、锁定键盘,锁定鼠标等操作

Delphi 模拟按键的方法 SendMessageA 说明: 调用一个窗口的窗口函数&#xff0c;将一条消息发给那个窗口。除非消息处理完毕&#xff0c;否则该函数不会返回SendMessage所包含4个参数: 1. hwnd 32位的窗口句柄窗口可以是任何类型的屏幕对象&#xff0c;因为Win32能够维护大多数…...

RTK数据的采集方法

采集RTK&#xff08;实时动态定位&#xff09;数据通常涉及使用高精度的GNSS&#xff08;全球导航卫星系统&#xff09;接收器&#xff0c;并通过基站和流动站的配合来实现。本文给出RTK数据采集的基本步骤 文章目录 准备设备设置基站设置流动站数据采集数据存储与处理应用数据…...

Next.js 入门学习

一、引言 在现代 Web 开发领域&#xff0c;Next.js 已成为构建高性能、可扩展且用户体验卓越的 React 应用程序的重要框架。它基于 React 并提供了一系列强大的特性和工具&#xff0c;能够帮助开发者更高效地构建服务器端渲染&#xff08;SSR&#xff09;、静态站点生成&#…...

2024年认证杯SPSSPRO杯数学建模B题(第一阶段)神经外科手术的定位与导航解题全过程文档及程序

2024年认证杯SPSSPRO杯数学建模 B题 神经外科手术的定位与导航 原题再现&#xff1a; 人的大脑结构非常复杂&#xff0c;内部交织密布着神经和血管&#xff0c;所以在大脑内做手术具有非常高的精细和复杂程度。例如神经外科的肿瘤切除手术或血肿清除手术&#xff0c;通常需要…...

安卓底层相机流的传输方式

这是安卓 相机流的定义 typedef enum {CAM_STREAMING_MODE_CONTINUOUS, /* continous streaming */CAM_STREAMING_MODE_BURST, /* burst streaming */CAM_STREAMING_MODE_BATCH, /* stream frames in batches */CAM_STREAMING_MODE_MAX} cam_streaming_mode_t; 在ca…...

【单链表】(更新中...)

一、 题单 206.反转链表203.移除链表元素 876.链表的中间结点BM8 链表中倒数最后k个结点21.合并两个有序链表 二、题目简介及思路 206.反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 思路简单&#xff0c;但是除了要两个指针进…...

开源堡垒机JumpServer配置教程:使用步骤与配置

开源堡垒机JumpServer配置教程&#xff1a;使用步骤与配置 上一篇文章星哥讲了如何安装JumpServer堡垒机&#xff0c;本篇文章来讲如何配置和使用JumpServer。 安装成功后&#xff0c;通过浏览器访问登录 JumpServer 地址: http://<JumpServer服务器IP地址>:<服务运…...

上门服务小程序开发,打造便捷生活新体验

随着互联网的快速发展&#xff0c;各种上门服务成为了市场的发展趋势&#xff0c;不管是各种外卖、家政、美甲、维修、按摩等等&#xff0c;都可以提供上门服务&#xff0c;人们足不出户就可以满足各种需求&#xff0c;商家也能够获得新的拓展业务渠道&#xff0c;提高整体收益…...

iOS中的类型推断及其在Swift编程语言中的作用和优势

iOS中的类型推断及其在Swift编程语言中的作用和优势 一、iOS中的类型推断 类型推断&#xff08;Type Inference&#xff09;是编程语言编译器或解释器自动推断变量或表达式的类型的能力。在支持类型推断的语言中&#xff0c;开发者在声明变量时无需显式指定其类型&#xff0c…...

工业检测基础-缺陷形态和相机光源选型

缺陷形态与相机选择依据 微小点状缺陷&#xff08;如微小气泡、杂质颗粒&#xff09; 相机选择依据&#xff1a; 分辨率&#xff1a;需要高分辨率相机&#xff0c;无论是面阵还是线阵相机&#xff0c;以确保能够清晰地分辨这些微小的点。对于面阵相机&#xff0c;像元尺寸要小&…...