当前位置: 首页 > news >正文

差异基因富集分析(R语言——GOKEGGGSEA)

接着上次的内容,上篇内容给大家分享了基因表达量怎么做分组差异分析,从而获得差异基因集,想了解的可以去看一下,这篇主要给大家分享一下得到显著差异基因集后怎么做一下通路富集。

1.准备差异基因集

我就直接把上次分享的拿到这边了。我们一般都把差异基因分为上调基因和下调基因分别做通路富集分析。下面上代码,可能包含我的一些个人习惯,勿怪。显著差异基因的筛选条件根据个人需求设置哈。

##载入所需R包
library(readxl)
library(DOSE)
library(org.Hs.eg.db)
library(topGO)
library(pathview)
library(ggplot2)
library(GSEABase)
library(limma) 
library(clusterProfiler)
library(enrichplot)##edger
edger_diff <- diff_gene_Group
edger_diff_up <- rownames(edger_diff[which(edger_diff$logFC > 0.584962501),])
edger_diff_down <- rownames(edger_diff[which(edger_diff$logFC < -0.584962501),])##deseq2
deseq2_diff <- diff_gene_Group2
deseq2_diff_up <- rownames(deseq2_diff[which(deseq2_diff$log2FoldChange > 0.584962501),])
deseq2_diff_down <- rownames(deseq2_diff[which(deseq2_diff$log2FoldChange < -0.584962501),])##将差异基因集保存为一个list
gene_diff_edger_deseq2 <- list()
gene_diff_edger_deseq2[["edger_diff_up"]] <- edger_diff_up
gene_diff_edger_deseq2[["edger_diff_down"]] <- edger_diff_down
gene_diff_edger_deseq2[["deseq2_diff_up"]] <- deseq2_diff_up
gene_diff_edger_deseq2[["deseq2_diff_down"]] <- deseq2_diff_down

2.进行通路富集分析

这里主要介绍普通的GO&KEGG&GSEA的简单富集。筛选显著富集通路的筛选条件也是根据自己的需求决定,一般是矫正后P值小于0.05。我这里是省事,写了各list循环。

for (i in 1:length(gene_diff_edger_deseq2)){keytypes(org.Hs.eg.db)entrezid_all = mapIds(x = org.Hs.eg.db,  keys = gene_diff_edger_deseq2[[i]], keytype = "SYMBOL", #输入数据的类型column = "ENTREZID")#输出数据的类型entrezid_all  = na.omit(entrezid_all)  #na省略entrezid_all中不是一一对应的数据情况entrezid_all = data.frame(entrezid_all) ##GO富集##GO_enrich = enrichGO(gene = entrezid_all[,1],OrgDb = org.Hs.eg.db, keyType = "ENTREZID", #输入数据的类型ont = "ALL", #可以输入CC/MF/BP/ALL#universe = 背景数据集我没用到它。pvalueCutoff = 1,qvalueCutoff = 1, #表示筛选的阈值,阈值设置太严格可导致筛选不到基因。可指定 1 以输出全部readable = T) #是否将基因ID映射到基因名称。GO_enrich_data  = data.frame(GO_enrich)write.csv(GO_enrich_data,paste('GO_enrich_',names(gene_diff_edger_deseq2)[i], '.csv', sep = ""))GO_enrich_data <- GO_enrich_data[which(GO_enrich_data$p.adjust < 0.05),]write.csv(GO_enrich_data,paste('GO_enrich_',names(gene_diff_edger_deseq2)[i], '_filter.csv', sep = ""))###KEGG富集分析###KEGG_enrich = enrichKEGG(gene = entrezid_all[,1], #即待富集的基因列表keyType = "kegg",pAdjustMethod = 'fdr',  #指定p值校正方法organism= "human",  #hsa,可根据你自己要研究的物种更改,可在https://www.kegg.jp/brite/br08611中寻找qvalueCutoff = 1, #指定 p 值阈值(可指定 1 以输出全部)pvalueCutoff=1) #指定 q 值阈值(可指定 1 以输出全部)KEGG_enrich_data  = data.frame(KEGG_enrich)write.csv(KEGG_enrich_data, paste('KEGG_enrich_',names(gene_diff_edger_deseq2)[i], '.csv', sep = ""))KEGG_enrich_data <- KEGG_enrich_data[which(KEGG_enrich_data$p.adjust < 0.05),]write.csv(KEGG_enrich_data, paste('KEGG_enrich_',names(gene_diff_edger_deseq2)[i], '_filter.csv', sep = ""))
}

3.通路富集情况可视化

这里只介绍一种简单的气泡图,当然还有其他的自己去了解吧。

##GO&KEGG富集BPCCMFKEGG分面绘图需要分开处理一下,富集结果里的ONTOLOGYL列修改
GO_enrich_data_BP <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "BP")
GO_enrich_data_CC <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "CC")
GO_enrich_data_MF <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "MF")##提取GO富集BPCCMF的top5
GO_enrich_data_filter <- rbind(GO_enrich_data_BP[1:5,], GO_enrich_data_CC[1:5,], GO_enrich_data_MF[1:5,])##重新整合进富集结果
GO_enrich@result <- GO_enrich_data_filter##处理KEGG富集结果
KEGG_enrich@result <- KEGG_enrich_data
ncol(KEGG_enrich@result)
KEGG_enrich@result$ONTOLOGY <- "KEGG"
KEGG_enrich@result <- KEGG_enrich@result[,c(10,1:9)]##整合GO KEGG富集结果
ego_GO_KEGG <- GO_enrich
ego_GO_KEGG@result <- rbind(ego_GO_KEGG@result, KEGG_enrich@result[1:5,])
ego_GO_KEGG@result$ONTOLOGY <- factor(ego_GO_KEGG@result$ONTOLOGY, levels = c("BP", "CC", "MF","KEGG"))##规定分组顺序##简单画图
pdf("edger_diff_up_dotplot.pdf", width = 7, height = 7)
dotplot(ego_GO_KEGG, split = "ONTOLOGY", title="UP-GO&KEGG", label_format = 60, color = "pvalue") + facet_grid(ONTOLOGY~., scale = "free_y")+theme(plot.title = element_text(hjust = 0.5, size = 13, face = "bold"), axis.text.x = element_text(angle = 90, hjust = 1))
dev.off()

4.气泡图如图所示

做了些处理,真实图片,左侧pathway是跟后面气泡一一对应的,当然还有其他可视化方式那就需要各位自己去探索了,谢谢!

5.GSEA富集分析

这里也是做一下简单的GSEA

##GSEA官方网站下载背景gmt文件并读入
geneset <- list()
geneset[["c2_cp"]] <- read.gmt("c2.cp.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_kegg_legacy"]] <- read.gmt("c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_kegg_medicus"]] <- read.gmt("c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_reactome"]] <- read.gmt("c2.cp.reactome.v2023.2.Hs.symbols.gmt")
geneset[["c3_tft"]] <- read.gmt("c3.tft.v2023.2.Hs.symbols.gmt")
geneset[["c4_cm"]] <- read.gmt("c4.cm.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_bp"]] <- read.gmt("c5.go.bp.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_cc"]] <- read.gmt("c5.go.cc.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_mf"]] <- read.gmt("c5.go.mf.v2023.2.Hs.symbols.gmt")
geneset[["c6"]] <- read.gmt("c6.all.v2023.2.Hs.symbols.gmt")
geneset[["c7"]] <- read.gmt("c7.all.v2023.2.Hs.symbols.gmt")##进行GSEA富集分析,这里也是写了个循环
gsea_results <- list()
for (i in names(gene_diff)){geneList <- gene_diff[[i]]$logFCnames(geneList) <- toupper(rownames(gene_diff[[i]]))geneList <- sort(geneList,decreasing = T)for (j in names(geneset)){listnames <- paste(i,j,sep = "_")gsea_results[[listnames]] <- GSEA(geneList = geneList,TERM2GENE = geneset[[j]],verbose = F,pvalueCutoff = 0.1,pAdjustMethod = "none",eps=0)}
}##批量绘图,注意这里如果有空富集通路,会报错!
for (j in 1:nrow(gsea_results[[i]]@result)) {p <- gseaplot2(x=gsea_results[[i]],geneSetID=gsea_results[[i]]@result$ID[j], title = gsea_results[[i]]@result$ID[j]) pdf(paste(paste(names(gsea_results)[i], gsea_results[[i]]@result$ID[j], sep = "_"),".pdf",sep = ""))print(p)dev.off()}

6.GSEA富集最简单图形如下

分享到此结束了,希望对大家有所帮助。

相关文章:

差异基因富集分析(R语言——GOKEGGGSEA)

接着上次的内容&#xff0c;上篇内容给大家分享了基因表达量怎么做分组差异分析&#xff0c;从而获得差异基因集&#xff0c;想了解的可以去看一下&#xff0c;这篇主要给大家分享一下得到显著差异基因集后怎么做一下通路富集。 1.准备差异基因集 我就直接把上次分享的拿到这…...

scrapy对接rabbitmq的时候使用post请求

之前做分布式爬虫的时候,都是从push url来拿到爬虫消费的链接,这里提出一个问题,假如这个请求是post请求的呢,我观察了scrapy-redis的源码,其中spider.py的代码是这样写的 1.scrapy-redis源码分析 def make_request_from_data(self, data):"""Returns a Reques…...

vue+elementUI+transition实现鼠标滑过div展开内容,鼠标划出收起内容,加防抖功能

文章目录 一、场景二、实现代码1.子组件代码结构2.父组件 一、场景 这两天做项目&#xff0c;此产品提出需求 要求详情页的顶部区域要在鼠标划入后展开里面的内容&#xff0c;鼠标划出要收起部分内容&#xff0c;详情底部的内容高度要自适应&#xff0c;我这里运用了鼠标事件t…...

大模型语料库的构建过程 包括知识图谱构建 垂直知识图谱构建 输入到sql构建 输入到cypher构建 通过智能体管理数据生产组件

以下是大模型语料库的构建过程&#xff1a; 一、文档切分语料库构建 数据来源确定&#xff1a; 首先&#xff0c;需要确定语料库的数据来源。这些来源可以是多种多样的&#xff0c;包括但不限于&#xff1a; 网络资源&#xff1a;利用网络爬虫技术从各种网站&#xff08;如新闻…...

阿里云ECS服务器域名解析

阿里云ECS服务器域名解析&#xff0c;以前添加两条A记录类型&#xff0c;主机记录分别为www和&#xff0c;这2条记录都解析到服务器IP地址。 1.进入阿里云域名控制台&#xff0c;找到域名 ->“解析设置”->“添加记录” 2.添加一条记录类型为A,主机记录为www&#xff0c…...

牛客周赛71:A:JAVA

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 \hspace{15pt}对于给定的两个正整数 nnn 和 kkk &#xff0c;是否能构造出 kkk 对不同的正整数 (x,y)(x,y)(x,y) &#xff0c;使得 xynxynxyn 。 \hspace{15pt}我们认为两对正整数 (…...

查询产品所涉及的表有(product、product_admin_mapping)

文章目录 1、ProductController2、AdminCommonService3、ProductApiService4、ProductCommonService5、ProductSqlService1. 完整SQL分析可选部分&#xff08;条件筛选&#xff09;&#xff1a; 2. 涉及的表3. 总结4. 功能概述 查询指定管理员下所有产品所涉及的表&#xff1f;…...

算法基础学习Day5(双指针、动态窗口)

文章目录 1.题目2.题目解答1.四数之和题目及题目解析算法学习代码提交 2.长度最小的子数组题目及题目解析滑动窗口的算法学习方法一&#xff1a;单向双指针(暴力解法)方法二&#xff1a;同向双指针(滑动窗口) 代码提交 1.题目 18. 四数之和 - 力扣&#xff08;LeetCode&#x…...

docker 部署 mysql 9.0.1

docker 如何部署 mysql 9 &#xff0c;请看下面步骤&#xff1a; 1. 先看 mysql 官网 先点进去 8 版本的 Reference Manual 。 选择 9.0 版本的。 点到这里来看&#xff0c; 这里有一些基础的安装步骤&#xff0c;可以看一下。 - Basic Steps for MySQL Server Deployment wit…...

关于小标join大表,操作不当会导致笛卡尔积,数据倾斜

以前总是说笛卡尔积&#xff0c;笛卡尔积&#xff0c;没碰到过&#xff0c;今天在跑流程调度时&#xff0c;就碰到笛卡尔积了&#xff0c;本来&#xff0c;就是查询几个编码的信息&#xff0c;然后由于使用的是with tmp as&#xff0c;没使用where in ,所以跑的很慢 现象&#…...

SpringMVC全局异常处理

一、Java中的异常 定义&#xff1a;异常是程序在运行过程中出现的一些错误&#xff0c;使用面向对象思想把这些错误用类来描述&#xff0c;那么一旦产生一个错误&#xff0c;即创建某一个错误的对象&#xff0c;这个对象就是异常对象。 类型&#xff1a; 声明异常&#xff1…...

出海服务器可以用国内云防护吗

随着企业国际化进程的加速&#xff0c;越来越多的企业选择将业务部署到海外服务器上&#xff0c;以便更贴近国际市场。然而&#xff0c;海外服务器也面临着来自全球各地的安全威胁和网络攻击。当出海服务器遭受攻击时&#xff0c;是否可以借助国内的云服务器来进行有效的防护呢…...

从零开始的使用SpringBoot和WebSocket打造实时共享文档应用

在现代应用中&#xff0c;实时协作已经成为了非常重要的功能&#xff0c;尤其是在文档编辑、聊天系统和在线编程等场景中。通过实时共享文档&#xff0c;多个用户可以同时对同一份文档进行编辑&#xff0c;并能看到其他人的编辑内容。这种功能广泛应用于 Google Docs、Notion 等…...

Ant Design Pro实战--day01

下载nvm https://nvm.uihtm.com/nvm-1.1.12-setup.zip 下载node.js 16.16.0 //非此版本会报错 nvm install 16.16.0 安装Ant Design pro //安装脚手架 npm i ant-design/pro-cli -g //下载项目 pro create myapp //选择版本 simple 安装依赖 npm install 启动umi yarn add u…...

pcl点云库离线版本构建

某天在摸鱼的小邓接到任务需要进行点云数据的去噪&#xff0c;在万能的github中发现如下pcl库非常好使&#xff0c;so有了此&#xff0c; 1.下载vs2017连接如下&#xff1a; ed2k://|file|mu_visual_studio_community_2017_version_15.1_x86_x64_10254689.exe|1037144|12F5C1…...

字节高频算法面试题:小于 n 的最大数

问题描述&#xff08;感觉n的位数需要大于等于2&#xff0c;因为n的位数1的话会有点问题&#xff0c;“且无重复”是指nums中存在重复&#xff0c;但是最后返回的小于n最大数是可以重复使用nums中的元素的&#xff09;&#xff1a; 思路&#xff1a; 先对nums倒序排序 暴力回…...

ElasticSearch常见面试题汇总

一、ElasticSearch基础&#xff1a; 1、什么是Elasticsearch&#xff1a; Elasticsearch 是基于 Lucene 的 Restful 的分布式实时全文搜索引擎&#xff0c;每个字段都被索引并可被搜索&#xff0c;可以快速存储、搜索、分析海量的数据。 全文检索是指对每一个词建立一个索引…...

Spring Boot如何实现防盗链

一、什么是盗链 盗链是个什么操作&#xff0c;看一下百度给出的解释&#xff1a;盗链是指服务提供商自己不提供服务的内容&#xff0c;通过技术手段绕过其它有利益的最终用户界面&#xff08;如广告&#xff09;&#xff0c;直接在自己的网站上向最终用户提供其它服务提供商的…...

工作中常用springboot启动后执行的方法

前言&#xff1a; 工作中难免会遇到一些&#xff0c;程序启动之后需要提前执行的需求。 例如&#xff1a; 初始化缓存&#xff1a;在启动时加载必要的缓存数据。定时任务创建或启动&#xff1a;程序启动后创建或启动定时任务。程序启动完成通知&#xff1a;程序启动完成后通…...

力扣-图论-3【算法学习day.53】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

32单片机——基本定时器

STM32F103有众多的定时器&#xff0c;其中包括2个基本定时器&#xff08;TIM6和TIM7&#xff09;、4个通用定时器&#xff08;TIM2~TIM5&#xff09;、2个高级控制定时器&#xff08;TIM1和TIM8&#xff09;&#xff0c;这些定时器彼此完全独立&#xff0c;不共享任何资源 1、定…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...