当前位置: 首页 > news >正文

torch.optim.lr_scheduler.ReduceLROnPlateau

torch.optim.lr_scheduler.ReduceLROnPlateau 是 PyTorch 中的一种学习率调度器,主要用于在模型训练过程中根据某些指标(如验证损失)动态调整学习率。它是一种基于性能指标动态调整学习率的策略,而不是预定义的固定时间调整。


主要功能

ReduceLROnPlateau 会监控某个指标(如验证损失),当该指标在若干个 epoch 中停止改善时(即进入"平台"期),将学习率按一定的比例降低,从而帮助模型更好地收敛。


常用参数

初始化 ReduceLROnPlateau 时,可以设置以下参数:

  1. optimizer:

    • 目标优化器(如 SGD, Adam),学习率调度器会更新此优化器中的学习率。
  2. mode:

    • 决定监控指标是否需要"最小化"或"最大化"。
    • 'min':监控指标越小越好(例如验证损失)。
    • 'max':监控指标越大越好(例如验证精度)。
  3. factor:

    • 学习率降低的比例,新的学习率为 lr = lr * factor
    • 默认值:0.1(学习率每次降低为原来的 10%)。
  4. patience:

    • 容忍的连续 epoch 数,在这段时间内监控指标没有改善,但不会立即降低学习率。
    • 默认值:10
  5. threshold:

    • 判断监控指标是否改善的阈值。
    • 默认值:1e-4(小于这个值的变化会被认为没有改善)。
  6. threshold_mode:

    • 'rel':相对变化(即与前一个值相比的比例变化)。
    • 'abs':绝对变化。
  7. cooldown:

    • 每次调整学习率后等待的 epoch 数,在此期间不会检测指标改善。
    • 默认值:0
  8. min_lr:

    • 学习率的下限,确保学习率不会被降低到此值以下。
    • 默认值:0
  9. eps:

    • 学习率变化的最小值,防止浮点数精度问题导致学习率更新失败。
    • 默认值:1e-8

常见用法

以下是使用 ReduceLROnPlateau 的典型步骤:

  1. 初始化优化器和调度器

    import torch
    import torch.nn as nn
    import torch.optim as optim# 假设有一个模型和一个损失函数
    model = nn.Linear(10, 1)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.01)# 初始化调度器
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
    
  2. 在训练循环中调用
    每个 epoch 完成后,使用验证集的性能指标来调用调度器:

    for epoch in range(50):# 训练过程model.train()for data, target in train_loader:optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 验证过程model.eval()val_loss = 0with torch.no_grad():for data, target in val_loader:output = model(data)val_loss += criterion(output, target).item()# 调度器监控验证损失scheduler.step(val_loss)# 打印当前学习率print(f"Epoch {epoch+1}: Learning rate: {optimizer.param_groups[0]['lr']}")
    

工作原理

  1. 监控指标

    • 每次调用 scheduler.step(metric),都会检查传入的 metric(如验证损失或验证精度)是否在过去 patience 个 epoch 中有所改善。
  2. 判断是否降低学习率

    • 根据 modethreshold,决定当前指标是否"足够好"。
    • 如果监控指标在 patience 个 epoch 内未改善,则将学习率乘以 factor
  3. 冷却期

    • 调整学习率后,进入 cooldown 冷却期,冷却期内不会监控指标。
  4. 最小学习率限制

    • 如果新的学习率低于 min_lr,则不再继续降低。

代码示例

假设验证损失在第 15 个 epoch 开始停滞:

Epoch 10: val_loss = 0.50, lr = 0.01
Epoch 11: val_loss = 0.49, lr = 0.01
...
Epoch 15: val_loss = 0.48, lr = 0.01  (No significant improvement for 10 epochs)
Epoch 16: val_loss = 0.47, lr = 0.001 (Reduce learning rate by factor of 0.1)
...
Epoch 25: val_loss = 0.46, lr = 0.001 (No significant improvement for 10 epochs)
Epoch 26: val_loss = 0.45, lr = 0.0001 (Reduce learning rate again)

注意事项

  1. 适用场景

    • 常用于训练到一定阶段后,指标改善速度减慢时,动态调整学习率有助于提高模型性能。
    • 尤其适合学习率对训练敏感的优化器(如 SGD)。
  2. 与其他调度器对比

    • StepLRCosineAnnealingLR 是预定义的固定时间调整学习率。
    • ReduceLROnPlateau 是基于性能指标的动态调整,更加灵活。
  3. 使用正确的监控指标

    • 确保传入的指标与训练目标一致(如验证损失应与 mode='min' 一起使用)。

通过动态调整学习率,ReduceLROnPlateau 可以帮助优化训练过程,特别是在模型性能进入瓶颈阶段时,非常有效。

相关文章:

torch.optim.lr_scheduler.ReduceLROnPlateau

torch.optim.lr_scheduler.ReduceLROnPlateau 是 PyTorch 中的一种学习率调度器,主要用于在模型训练过程中根据某些指标(如验证损失)动态调整学习率。它是一种基于性能指标动态调整学习率的策略,而不是预定义的固定时间调整。 主要…...

Linux 搭建ftp服务

FTP是什么? FTP(文件传输协议,File Transfer Protocol)是一种用于在计算机之间传输文件的网络协议。它基于客户端-服务器模型,允许用户从远程服务器上传、下载和管理文件。 FTP的主要作用 文件传输:FTP最基…...

阳光电源嵌入式面试题及参考答案

讲一讲声明变量的时候应该注意哪些内容。 在声明变量时,首先要考虑变量的类型。不同的数据类型有不同的用途和占用的存储空间大小。例如,基本数据类型如整型(int)通常占用 4 个字节,用来存储整数;而浮点型(float)用于存储带有小数部分的数字,占用 4 个字节,双精度浮点…...

PS的功能学习(形状、文字、图层)

关于图层 如果是在一个已经有其他图层的文档界面下,拉一张新图进来,就会自动转换成智能对象 注意,放大之后再栅格化,是会根据原本的防矢量图规则放大之后,再变回像素图层,这个变回来的像素图层是“在原像素…...

项目实例_FashionMNIST_CNN

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…...

Ubuntu 安装 web 服务器

安装 apach sudo apt install apache2 -y 查看 apach2 版本号 apache2 -v 检查是否启动服务器 sudo service apache2 status 检查可用的 ufw 防火墙应用程序配置 sudo ufw app list 关闭防火墙 sudo ufw disable 更改允许通过端口流量 sudo ufw allow Apache Full 开启…...

burp的编解码,日志,比较器

声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&a…...

2.1、模版语法

2.1.1、插值语法 1、代码示例 <body><!-- 准备容器 --><div id"app"><!-- 在data中声明的 --><!--1、 data中声明的变量 --><h1>{{msg}}</h1><h1>{{sayHello()}}</h1><!-- 不在data中的变量不可以 -->…...

最小二乘法拟合出二阶响应面近似模型

背景&#xff1a;根据样本试验数据拟合出二阶响应面近似模型&#xff08;正交二次型&#xff09;&#xff0c;并使用决定系数R和调整的决定系数R_adj来判断二阶响应面模型的拟合精度。 1、样本数据&#xff08;来源&#xff1a;硕士论文《航空发动机用W形金属密封环密封性能分析…...

【汽车】-- 常见的汽车悬挂系统

汽车悬挂系统是车辆的重要组成部分&#xff0c;其主要功能是连接车轮和车身&#xff0c;减缓路面颠簸对车身的影响&#xff0c;提高行驶的平顺性、舒适性和操控性。以下是常见的汽车悬挂系统类型及其特点&#xff1a; 1. 独立悬挂系统 每个车轮可以独立上下运动&#xff0c;不…...

VMware Workstation Pro 17 下载 以及 安装 Ubuntu 20.04.6 Ubuntu 启用 root 登录

1、个人免费版本 VMware Workstation Pro 17 下载链接怎么找&#xff1f;直接咕咕 VMware 找到如下链接。链接如下&#xff1a;Workstation 和 Fusion 对个人使用完全免费&#xff0c;企业许可转向订阅 - VMware 中文博客 点进去链接之后你会看到如下&#xff0c;注意安装之后仍…...

记录ubuntu22.04重启以后无法获取IP地址的问题处理方案

现象描述&#xff1a;我的虚拟机网络设置为桥接模式&#xff0c;输入ifconfig只显示127.0.0.1&#xff0c;不能连上外网。&#xff0c;且无法上网&#xff0c;用ifconfig只有如下显示&#xff1a; 1、sudo -i切换为root用户 2、输入dhclient -v 再输入ifconfig就可以看到多了…...

linux 删除系统特殊的的用户帐号

禁止所有默认的被操作系统本身启动的且不需要的帐号&#xff0c;当你第一次装上系统时就应该做此检查&#xff0c;Linux提供了各种帐号,你可能不需要&#xff0c;如果你不需要这个帐号,就移走它&#xff0c;你有的帐号越多,就越容易受到攻击。 1.为删除你系统上的用户,用下面的…...

core Webapi jwt 认证

core cookie 验证 Web API Jwt 》》》》用户信息 namespace WebAPI001.Coms {public class Account{public string UserName { get; set; }public string UserPassword { get; set; }public string UserRole { get; set; }} }》》》获取jwt类 using Microsoft.AspNetCore.Mvc…...

【Redis】Redis基础——Redis的安装及启动

一、初识Redis 1. 认识NoSQL 数据结构&#xff1a;对于SQL来说&#xff0c;表是有结构的&#xff0c;如字段约束、字段存储大小等。 关联性&#xff1a;SQL 的关联性体现在两张表之间可以通过外键&#xff0c;将两张表的数据关联查询出完整的数据。 查询方式&#xff1a; 2.…...

Oracle Recovery Tools工具一键解决ORA-00376 ORA-01110故障(文件offline)---惜分飞

客户在win上面迁移数据文件,由于原库非归档,结果导致有两个文件scn不一致,无法打开库,结果他们选择offline文件,然后打开数据库 Wed Dec 04 14:06:04 2024 alter database open Errors in file d:\app\administrator\diag\rdbms\orcl\orcl\trace\orcl_ora_6056.trc: ORA-01113:…...

常用环境部署(二十四)——Docker部署开源物联网平台Thingsboard

1、Docker和Docker-compose安装 参考网址如下&#xff1a; CENTOS8.0安装DOCKER&DOCKER-COMPOSE以及常见报错解决_centos8安装docker-compose-CSDN博客 2、 Thingsboard安装 &#xff08;1&#xff09;在/home目录下创建docker-compose.yml文件 vim /home/docker-com…...

SqlServer Doris Flink SQL 类型映射关系

SqlServer 对应 Flink SQL 数据类型映射关系 SQL Server TypeFlink SQL Typechar(n)CHAR(n)varchar(n)VARCHAR(n)nvarchar(n)VARCHAR(n)nchar(n)VARCHAR(n)textSTRINGntextSTRINGxmlSTRINGdecimal(p, s)DECIMAL(p, s)moneyDECIMAL(p, s)smallmoneyDECIMAL(p, s)numericNUMERIC…...

Java 中的方法重写

在 Java 中&#xff0c;方法重写&#xff08;Method Overriding&#xff09;是面向对象编程的一个重要概念&#xff0c;它指的是子类中存在一个与父类中相同名称、相同参数列表和相同返回类型的方法。方法重写使得子类可以提供特定的实现&#xff0c;从而覆盖&#xff08;或改变…...

v-for遍历多个el-popover;el-popover通过visible控制显隐;点击其他隐藏el-popover

场景:el-popover通过visible控制显隐;同时el-popover是遍历生成的多个。 原文档的使用visible后就不能点击其他地方使其隐藏;同时解决实现点击其他区域隐藏 <template><div><template v-for="(item,index) in arr" :key="index"><…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...