当前位置: 首页 > news >正文

基于PCRLB的CMIMO雷达资源调度方法(MATLAB实现)

集中式多输入多输出CMIMO雷达作为一种新体制雷达,能够实现对多个目标的同时多波束探测,在多目标跟踪领域得到了广泛运用。自从2006年学者Haykin提出认知雷达理论,雷达资源分配问题就成为一个有实际应用价值的热点研究内容。本文基于目标跟踪的后验克拉美罗下界PCRLB(posterior Cramer-Rao lower bound)实现了雷达多目标跟踪的功率资源分配。

1.目标运动模型

图1为CMIMO雷达对多个目标同时跟踪的场景示意图。

图1 CMIMO同时多波束跟踪

    假设Q个彼此分离的目标做匀速直线CV运动,第q个目标在第k时刻的运动模型定义:

\boldsymbol{x}_{k}^{q}=\boldsymbol{F}_{q} \boldsymbol{x}_{k-1}^{q}+\boldsymbol{u}_{k-1}^{q}

 其中\boldsymbol{x}_{k}^{q}=\left[x_{k}^{q}, \dot{x}_{k}^{q}, y_{k}^{q}, \dot{y}_{k}^{q}\right]^{\mathrm{T}}为状态向量。

状态转移矩阵为:

\boldsymbol{F}_{q}=\boldsymbol{I}_{2} \otimes\left[\begin{array}{ll} 1 & T \\ 0 & 1 \end{array}\right]

\boldsymbol{u}_{k-1}^{q}为一个零均值的高斯白噪声,其协方差表示为:

\boldsymbol{Q}_{k-1}^{q}=\boldsymbol{\kappa}_{q} \boldsymbol{I}_{2} \otimes\left[\begin{array}{ll} \frac{1}{3} T^{3} & \frac{1}{2} T^{2} \\ \frac{1}{2} T^{2} & T \end{array}\right]

\boldsymbol{\kappa}_{q}是用来控制过程噪声大小的系数。

2.雷达量测模型

       设CMIMO雷达坐标为(0, 0)。在k时刻对Q个目标进行跟踪,第q个目标对应量测和状态向量之间的转换关系表示为:

\boldsymbol{z}_{q, k}=\boldsymbol{h}_{q, k}\left(\boldsymbol{x}_{k}^{q}\right)+\boldsymbol{v}_{q, k}

其中\boldsymbol{v}_{q, k} \sim N\left(0, \boldsymbol{R}_{q, k}\right)为量测噪声,\boldsymbol{h}_{q, k}\left(\boldsymbol{.}\right)为量测和状态向量之间的映射过程,分别为距离、速度与角度:

\begin{array}{l} \boldsymbol{h}_{q, k}(\bullet)=\left[r_{q, k}(\bullet), f_{q, k}(\bullet), \varphi_{q, k}(\bullet)\right]^{\mathrm{T}} \\ \left\{\begin{array}{l} r_{q, k}\left(\boldsymbol{x}_{k}^{q}\right)=\sqrt{\left(x_{k}^{q}\right)^{2}+\left(y_{k}^{q}\right)^{2}} \\ f_{q, k}\left(\boldsymbol{x}_{k}^{q}\right)=-\frac{2}{\lambda} *\left(\dot{x}_{k}^{q}, \dot{y}_{k}^{q}\right)\binom{x_{k}^{q}}{y_{k}^{q}} / r_{q, k} \\ \varphi_{q, k}\left(\boldsymbol{x}_{k}^{q}\right)=\arctan 2\left(y_{k}^{q}\right) /\left(x_{k}^{q}\right) \end{array}\right. \end{array}

       量测噪声的协方差矩阵表示为:

\begin{array}{l} \boldsymbol{R}_{q, k}=\operatorname{diag}\left(\boldsymbol{R}_{r_{q, k}}^{2}, \boldsymbol{R}_{f_{q, k}}^{2}, \boldsymbol{R}_{\varphi_{q k}}^{2}\right) \\ \left\{\begin{array}{l} \boldsymbol{R}_{r_{q, k}}^{2} \propto\left(\alpha_{q, k} P_{q, k}\left|\sigma_{k}^{q}\right|^{2}\right)^{-1} \\ \boldsymbol{R}_{f_{q, k}}^{2} \propto\left(\alpha_{q, k} P_{q, k}\left|\sigma_{k}^{q}\right|^{2}\right)^{-1} \\ \boldsymbol{R}_{\varphi_{q, k}}^{2} \propto\left(\alpha_{q, k} P_{q, k}\left|\sigma_{k}^{q}\right|^{2}\right)^{-1} \end{array}\right. \end{array}

其中,\sigma_{k}^{q}为目标RCS,P_{k,q}为实际功率,\alpha_{k,q}为大小与距离4次方成反比的衰减系数。上式可以看出,在跟踪过程中,目标RCS和雷达发射参数均会影响量测协方差。

3.多目标跟踪PCRLB递推

       跟踪滤波的无偏估计量与目标状态向量之间满足:

\mathbb{E}_{x_{k}^{q}, \boldsymbol{x}_{g, k}}\left\{\left[\hat{x}_{k \mid k}^{q}\left(\boldsymbol{z}_{q, k}\right)-\boldsymbol{x}_{k}^{q}\right]\left[\hat{x}_{k \mid k}^{q}\left(z_{q, k}\right)-\boldsymbol{x}_{k}^{q}\right]^{\mathrm{T}}\right\} \geq \operatorname{FIM}^{-1}\left(\boldsymbol{x}_{k}^{q}\right)

其中为\hat{x}_{k \mid k}^{q}\left(\boldsymbol{z}_{q, k}\right)无偏估计量;\mathbb{E}_{x_{k}^{q}, \boldsymbol{x}_{g, k}}表示数学期望操作;{FIM}^{-1}\left(\boldsymbol{x}_{k}^{q}\right)表示PCRLB矩阵,对应逆矩阵为目标q所对应的Fisher Information Matrix。其递推公式为:

\begin{array}{l} \operatorname{FIM}\left(\boldsymbol{x}_{k}^{q}\right)=\operatorname{FIM}_{P}\left(\boldsymbol{x}_{k}^{q}\right)+\operatorname{FIM}_{z}\left(\boldsymbol{x}_{k}^{q}\right) \\ =\left[\boldsymbol{Q}_{k-1}^{q}+\boldsymbol{F}_{q} \operatorname{FIM}^{-1}\left(\boldsymbol{x}_{k-1}^{q}\right) \boldsymbol{F}_{q}^{\mathrm{T}}\right]^{-1}+\boldsymbol{H}_{q, k}^{\mathrm{T}}\left(\hat{\boldsymbol{R}}_{q, k}\right)^{-1} \boldsymbol{H}_{q, k} \end{array}

其中\operatorname{FIM}_{P}\left(\boldsymbol{x}_{k}^{q}\right)表示目标状态先验分布对应的FIM,\operatorname{FIM}_{Z}\left(\boldsymbol{x}_{k}^{q}\right)为量测信息FIM。\boldsymbol{H}_{q, k}表示雅克比矩阵:\boldsymbol{H}_{q, k}^{\mathrm{T}}=\left[\nabla_{\chi_{k}^{g}} r_{q, k}, \nabla_{x_{k}^{g}} f_{q, k}, \nabla_{x_{k}^{g}} \varphi_{q, k}\right]。对FIM求逆得到PCRLB矩阵:

F_{P C R L B}\left(P_{k}^{q}, \boldsymbol{x}_{k}^{q}\right)=\operatorname{FIM}^{-1}\left(P_{k}^{q}, \boldsymbol{x}_{k}^{q}\right)

其中P_{k}^{q}k时刻对第q个目标分配的功率资源,F_{P C R L B}\left(P_{k}^{q}, \boldsymbol{x}_{k}^{q}\right)对角线元素对应目标状态向量的无偏估计方差下界,可将其作为代价函数:\mathbb{F}\left(P_{k}, \boldsymbol{x}_{k}^{q}\right)=\max \left(\sqrt{\operatorname{tr}\left\{F_{P C R L B}\left(P_{k}^{q}, \boldsymbol{x}_{k}^{q}\right)\right\}}\right)。进一步地,可以跟踪实际物理约束构造资源调度模型,我们采用MinMax准则优化多目标跟踪精度。

        MinMax-PCRLB优化模型可以建模为:

\begin{array}{l} \min \left[\mathbb{F}\left(P_{k}, \boldsymbol{x}_{k}^{q}\right)\right] \\ \text { s.t. }\left\{\begin{array}{l} \left|P_{k}^{q}\right|_{1}=P_{\text {total }} \\ \bar{P}_{\min } \leq P_{k}^{q} \leq \bar{P}_{\max } \\ q=1,2, \ldots, Q \end{array}\right. \end{array}

其中,|.|_{1}表示1范数。P_{\text {total }}\\ \bar{P}_{\max}\\ \bar{P}_{\min }分别为总功率、最大分配功率与最小分配功率。已经证明上述问题是一个凸问题,可以通过典型的优化算法进行求解,得到下一帧的雷达资源调度方案。

4.仿真实验

       CMIMO雷达对三个目标进行跟踪,利用扩展卡尔曼滤波或者无迹卡尔曼滤波算法进行跟踪,蒙特卡洛试验次数设置为100次。通过MATLAB进行仿真,能够得到如下结果:

图2 多目标与雷达的距离变化曲线图

图3 位置估计结果

图4 速度估计结果

图5 雷达资源调度结果

       结合图2与图5可以看出,在跟踪前期,目标1距离雷达最远,系统为了保证最远目标的跟踪精度,分配绝大部分功率给目标1。随着目标1距离雷达越来越近,系统分配给目标1的功率逐渐减小。而目标2距离雷达越来越远,因此分配给目标2的功率越来越大。另外,目标3的距离一直较小,因此在跟踪全过程中,分配给目标3的雷达资源最少。

       另外,从图3与图4中可以看出,系统对多个目标的运动参数的估计是收敛的,且PCRLB能够表征目标跟踪的估计下界。PCRLB能够指导雷达完成雷达资源的有效分配。如有代码问题,加UltraNextYJ交流。

部分代码如下:

%% PCRLB的计算与比较(用上一时刻进行迭代)
CR_pos_PCRLB = zeros(N_tracking,TAR_NUM);
CR_vel_PCRLB = zeros(N_tracking,TAR_NUM);
for tar_num = 1:TAR_NUMJ = inv(P_0);    % pcrlb初始化for k = 1:N_tracking% N为跟踪时间D11 = sum(d11_pcrlb(:,:,k,:,tar_num),4)./MC;    D12 = sum(d12_pcrlb(:,:,k,:,tar_num),4)./MC;D22 = sum(d22_pcrlb(:,:,k,:,tar_num),4)./MC;% PCRLBBound_CRLB = inv(J);% 位置和速度的PCRLB的计算CR_pos_PCRLB(k,tar_num) = sqrt(Bound_CRLB(1,1) + Bound_CRLB(3,3));   CR_vel_PCRLB(k,tar_num) = sqrt(Bound_CRLB(2,2) + Bound_CRLB(4,4));end
end
%% 计算跟踪过程对应的RMSE,将误差存入矩阵
position = zeros(N_tracking,MC,TAR_NUM);
velocity = zeros(N_tracking,MC,TAR_NUM);
rmse_position = zeros(N_tracking,TAR_NUM);
rmse_velocity = zeros(N_tracking,TAR_NUM);
for tar_num = 1:TAR_NUMfor i = 1:MCfor k = 1:N_trackingerror(:) = sV(:,k,i,tar_num) - eV(:,k,i,tar_num);% RMSEerror2(:) = error(:).^2;               error2_dis = error2(1) + error2(3);    error2_vel = error2(2) + error2(4);position(k,i,tar_num) = error2_dis;   velocity(k,i,tar_num) = error2_vel;endend
end
for tar_num = 1:TAR_NUMrmse_position(:,tar_num) = sqrt(sum(position(:,:,tar_num),2)./MC);  rmse_velocity(:,tar_num) = sqrt(sum(velocity(:,:,tar_num),2)./MC);
end

 

相关文章:

基于PCRLB的CMIMO雷达资源调度方法(MATLAB实现)

集中式多输入多输出CMIMO雷达作为一种新体制雷达,能够实现对多个目标的同时多波束探测,在多目标跟踪领域得到了广泛运用。自从2006年学者Haykin提出认知雷达理论,雷达资源分配问题就成为一个有实际应用价值的热点研究内容。本文基于目标跟踪的…...

PAT--1035 插入与归并

题目描述 根据维基百科的定义: 插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。 归并排序进行如…...

Ubuntu20.04.6编译OpenWRT23.05.5错误

在Ubuntu20.04.6编译OpenWRT23.05.5时,会出现如下提示: fatal error: asm/types.h: No such file or directory 如果我们执行如下命令: sudo ln -s /usr/include/asm-generic /usr/include/asm 此时再次编译,会有如下提示&…...

一文说清flink从编码到部署上线

引言:目前flink的文章比较多,但一般都关注某一特定方面,很少有一个文章,从一个简单的例子入手,说清楚从编码、构建、部署全流程是怎么样的。所以编写本文,自己做个记录备查同时跟大家分享一下。本文以简单的mysql cdc为例展开说明。 环境说明:MySQL:5.7;flink:1.14.0…...

【5G】5G Physical Layer物理层(一)

5G多址接入和物理层与长期演进(LTE)存在一些差异。在下行方向,5G与LTE相似,依旧采用正交频分多址(OFDMA)。而在上行方向,5G采用了OFDMA和单载波频分多址(SC-FDMA)&#x…...

GauHuman阅读笔记【3D Human Modelling】

笔记目录 1. 基本信息2. 理解(个人初步理解,随时更改)3. 精读SummaryResearch Objective(s)Background / Problem StatementMethod(s)EvaluationConclusionReferences1. 基本信息 题目:GauHuman: Articulated Gaussian Splatting from Monocular Human Videos时间:2023.12…...

qemu安装arm64架构银河麒麟

qemu虚拟化软件,可以在一个平台上模拟另一个硬件平台,可以支持多种处理器架构。 一、安装 安装教程:https://blog.csdn.net/qq_36035382/article/details/125308044 下载链接:https://qemu.weilnetz.de/w64/2024/ 我下载的是 …...

在Elasticsearch (ES) 中,integer 和 integer_range的区别

在Elasticsearch (ES) 中,integer 和 integer_range 是两种不同的字段类型,它们用于存储和查询不同类型的数据。 Integer: integer 类型是用于存储32位整数值的简单数据类型。这个类型的字段适合用来表示单一的整数数值,例如用户的年龄、商品的数量等。支持标准的数值操作,…...

Playwright中Page类的方法

导航和页面操作 goto(url: str, **kwargs: Any): 导航到一个URL。 reload(**kwargs: Any): 重新加载当前页面。 go_back(**kwargs: Any): 导航到会话历史记录中的前一个页面。 go_forward(**kwargs: Any): 导航到会话历史记录中的下一个页面。 set_default_navigation_tim…...

硬链接方式重建mysql大表

硬链接方式重建mysql大表 操作步骤 选择数据库 select datadir; 进入数据文件目录 cd /data/mysql/mydata/testdb 创建硬连接 ln test_trans_msg_xx.ibd test_service_trans_msg_xx.ibd.bak ll test_trans_msg_xx* 进库删除表 DROP TABLE test_trans_msg_xx; 重建表 CREATE T…...

GPIO在ZYNQ7000中的结构和相关寄存器解析

GPIO MASK DATA LSW和 MASK DATA MSW LSW和MSW分别是LSW (Least Significant Word)和MSW (Most Significant Word)。 因为DATA是u32,所以如果寄存器的基址是XGPIOPS_DATA_LSW_OFFSET,那么32位就能同时让高16位的MASK DATA MSW]31:16和 MASK DATA LSW的bit7同时为…...

Qt Xlsx安装教程

Qt Xlsx安装教程 安装perl 如果没有安装perl,请参考perl Window安装教程 下载QtXlsxWriter源码 下载地址 ming32-make编译32 lib库 C:\Qt\Qt5.12.12\5.12.12\mingw73_32>d: D:\>cd D:\Code\QtXlsxWriter-master\QtXlsxWriter-master D:\Code\QtXlsxWrit…...

Certimate自动化SSL证书部署至IIS服务器

前言:笔者上一篇内容已经部署好了Certimate开源系统,于是开始搭建部署至Linux和Windows服务器,Linux服务器十分的顺利,申请证书-部署证书很快的完成了,但是部署至Windows Server的IIS服务时,遇到一些阻碍&a…...

【中工开发者】鸿蒙商城实战项目(启动页和引导页)

创建一个空项目 先创建一个新的项目选择第一个,然后点击finish 接下来为项目写一个名字,然后点击finish。 把index页面的代码改成下面代码块的代码,就能产生下面的效果 Entry Component struct Index {build() {Column(){Blank()Column(){…...

跟李笑来学美式俚语(Most Common American Idioms): Part 63

Most Common American Idioms: Part 63 前言 本文是学习李笑来的Most Common American Idioms这本书的学习笔记,自用。 Github仓库链接:https://github.com/xiaolai/most-common-american-idioms 使用方法: 直接下载下来(或者clone到本地…...

scala中如何解决乘机排名相关的问题

任务目标: 1.计算每个同学的总分和平均分 2.按总分排名,取前三名 3.按单科排名,取前三名 好的,我们可以用Scala来完成这个任务。下面是一个简单的示例代码,它将演示如何实现这些功能: // 假设我们有一个…...

OpenCV相机标定与3D重建(10)眼标定函数calibrateHandEye()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算手眼标定: g T c _{}^{g}\textrm{T}_c g​Tc​ cv::calibrateHandEye 是 OpenCV 中用于手眼标定的函数。该函数通过已知的机器人…...

Hadoop生态圈框架部署(九-2)- Hive HA(高可用)部署

文章目录 前言一、Hive部署(手动部署)下载Hive1. 上传安装包2. 解压Hive安装包2.1 解压2.2 重命名2.3 解决冲突2.3.1 解决guava冲突2.3.2 解决SLF4J冲突 3. 配置Hive3.1 配置Hive环境变量3.2 修改 hive-site.xml 配置文件3.3 配置MySQL驱动包3.3.1 下在M…...

docker 相关操作

1. 以下是一些常见的 Docker 命令&#xff1a; docker --version显示安装的 Docker 版本。 docker pull <image_name>从 Docker Hub 或其他镜像仓库下载镜像。 docker build -t <image_name> <path>从指定路径的 Dockerfile 构建 Docker 镜像。 docker i…...

AI作图效率高,亲测ToDesk、顺网云、青椒云多款云电脑AIGC实践创作

一、引言 随着人工智能生成内容&#xff08;AIGC&#xff09;的兴起&#xff0c;越来越多的创作者开始探索高效的文字处理和AI绘图方式&#xff0c;而云电脑也正成为AIGC创作中的重要工具。相比于传统的本地硬件&#xff0c;云电脑在AIGC场景中展现出了显著的优势&#xff0c;…...

【代码随想录day57】【C++复健】 53. 寻宝(prim算法);53. 寻宝(kruskal算法)

53. 寻宝&#xff08;prim算法&#xff09; 好像在研究生的算法课上学过prim算法和kruskal算法&#xff0c;不过当时只是了解了一下大致的概念和流程&#xff0c;并没有涉及到如何去写代码的部分&#xff0c;今天也算是学习了一下这两个算法的代码应该如何去实现&#xff0c;还…...

C++中多态

1) 什么是多态性&#xff1f;C中如何实现多态&#xff1f; 多态性是指通过基类指针或引用调用派生类的函数&#xff0c;实现不同的行为 多态性可以提高代码的灵活性和可扩展性&#xff0c;使程序能够根据不同的对象类型执行不同的操作。 2&#xff09;C中如何实现多态&#…...

【实现多网卡电脑的网络连接共享】

电脑A配备有两张网卡&#xff0c;分别命名为eth0和eth1&#xff08;对于拥有超过两张网卡的情况&#xff0c;解决方案相似&#xff09;。其中&#xff0c;eth0网卡能够连接到Internet&#xff0c;而eth1网卡则通过网线直接与另一台电脑B相连&#xff08;在实际应用中&#xff0…...

算力介绍与解析

算力&#xff08;Computing Power&#xff09;是指计算机系统在单位时间内处理数据和执行计算任务的能力。算力是衡量计算机性能的重要指标&#xff0c;直接影响计算任务的速度和效率。 算力的分类和单位 a. 基础算力&#xff1a;以CPU的计算能力为主。适用于各个领域的计算。…...

解决 MyBatis 中空字符串与数字比较引发的条件判断错误

问题复现 假设你在 MyBatis 的 XML 配置中使用了如下代码&#xff1a; <if test"isCollect ! null"><choose><when test"isCollect 1">AND exists(select 1 from file_table imgfile2 where task.IMAGE_SEQimgfile2.IMAGE_SEQ and im…...

python 词向量的代码解读 self.word_embeds = nn.Embedding(vocab_size, embedding_dim) 解释下

在PyTorch中&#xff0c;nn.Embedding 是一个用于将稀疏的离散数据表示为密集的嵌入向量的模块。这在自然语言处理&#xff08;NLP&#xff09;任务中非常常见&#xff0c;例如在处理单词或字符时&#xff0c;我们通常需要将这些离散的标识符转换为可以被神经网络处理的连续值向…...

记一次:使用C#创建一个串口工具

前言&#xff1a;公司的上位机打不开串口&#xff0c;发送的时候设备总是关机&#xff0c;因为和这个同事关系比较好&#xff0c;编写这款软件是用C#编写的&#xff0c;于是乎帮着解决了一下&#xff08;是真解决了&#xff09;&#xff0c;然后整理了一下自己的笔记 一、开发…...

Android Studio新版本的一个资源id无法找到的bug解决

Android Studio新版本的一个资源id无法找到的bug解决 文章目录 Android Studio新版本的一个资源id无法找到的bug解决一、前言二、Android Studio的无法获取到资源id的bug1、一段简单的Java代码1、错误现象2、错误解决方法 三、其他1、小结2、gradle.properties文件 其他相关属性…...

Datawhale AI冬令营(第一期)--零基础定制你的专属大模型

本文主要简述如何快速完成和一些小细节 第一步下载嬛嬛数据集 数据来源&#xff1a;self-llm/dataset/huanhuan.json at master datawhalechina/self-llm GitHub 注意:1.一定是数据集下载完成一定是.json结尾的 2.这个是github的网址&#xff0c;可能会遇到打不开的情况 …...

LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略

LLMs之APE&#xff1a;基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略 目录 Prompt Improver的简介 0、背景痛点 1、优势 2、实现思路 Prompt优化 示例管理 提示词评估 Prompt Improver的使用方法 1、使用方法 Prompt Improver的案例应用 1、Kap…...

学网站建设需要学多久/百度搜索app免费下载

Web开发过程中&#xff0c;中文乱码产生的根源在于Web组件之间、或Web组件与浏览器、与数据库所使用的字符集标准不统一。 一些常见编码&#xff1a; GBK是GB2312的扩展。 Unicode又称作万国码或统一码&#xff0c;是由国际组织制定的一种可以容纳世界上几乎所有的文字和符号…...

网站分站是怎么做的/东莞网络推广及优化

目录列表1 定义2 方法3 列表生成式课程链接列表 1 定义 列表list是一种组合数据类型&#xff0c;下面给出一些例子 list1 [1, 2, 3, 4, 5 ] list2 ["a", "b", "c", "d","e","f"] list3 [physics, chemistry…...

社会组织网站建设/web网页制作教程

linux中如何重启指定网卡linux中可通过以下方式进行重启指定网卡&#xff1a; 一、service network restart首先用C工具连接到Linux命令行界面。 或者进入操作系统界面&#xff0c;选择终端输入&#xff1b;如对所有的网卡进行重启操作&#xff0c; 可以尝试输入&#xff1a;se…...

淮安网站建设案例/互联网电商平台

第一步: 如果是XP系统: 1.开始——运行——输入cmd——回车——在打开的窗口中输入net stop WuAuServ 2.开始——运行——输入%windir% 3.在打开的窗口中有个文件夹叫SoftwareDistribution,把它重命名为SDold 4.开始——运行——输入cmd——回车——在打开的窗口中输入net star…...

加快公司网站建设/网络销售怎么做才能做好

引用分区(reference partitioning)是Oracle Database 11g Release 1及以上版本的一个新特性。它处理的是父/子对等分区的问题。也就是说&#xff0c;要以某种方式对子表分区&#xff0c;使得各个子表分区分别与一个你表分区存在一对一的关系。在某些情况下这很重要&#xff0c;…...

电商网站建设服务/有效果的网站排名

转自&#xff1a;http://blog.csdn.net/onlylove_longshao/article/details/53057381 1、JavaWeb概念 Java web&#xff0c;是用java技术来解决相关web互联网领域的技术的总称。web包括&#xff1a;web服务器和web客户端两部分。java在最早web客户端的应用有java applet程序&am…...