【NLP 14、激活函数 ② tanh激活函数】
学会钝感力,走向美好的方向
—— 24.12.11
一、tanh激活函数
1. tanh函数的定义
tanh是双曲正切函数(Hyperbolic Tangent),数学表达式为![]()
其函数图像是一个S型曲线,以原点 (0,0) 为中心对称,定义域为(-∞,+∞),值域是( - 1,1)。
2.tanh函数的特点
① 输出范围有限:
输出值始终在-1到1之间,这使得在神经网络中使用时,能够将神经元的输出限制在一个特定的区间内,避免输出值过大或过小而导致的梯度消失或梯度爆炸问题(相对而言,比没有范围限制的激活函数在这方面有优势)。
例如,在一个多层神经网络中,如果某一层的输出没有限制,随着层数的增加,输出可能会变得极大或极小,而 tanh 函数可以起到一定的稳定输出的作用。
② 原点对称:
tanh是奇函数,即tanh(-x) = -tanh(x)。这种对称性使得它在处理具有正负两种特征的数据时比较合适。
例如,在一些需要区分正负信号的神经网络(如在处理包含正负情感倾向的文本分类任务)中,tanh 函数能够更好地表示这种对称的特征空间
③ 单调性:
在定义域内是单调递增函数,这保证了其导数具有一定的良好性质,有利于在反向传播算法中计算梯度。
3.导数及其性质
tanh 函数的导数为
。这个导数在反向传播过程中用于计算梯度,它的计算相对简单,并且由于tanh(x) 的值域是(-1,1),所以 1 - tanh(x) ^ 2 的值域是 (0,1],这意味着在反向传播时,梯度的值始终是有限的,不会出现像某些激活函数(如 Relu 函数在某些情况下导数恒为1可能导致梯度爆炸)那样导致梯度失控的情况。
4.应用场景
循环神经网络(RNN)
在 RNN 及其变体(如 LSTM、GRU)中经常被用作激活函数。
例如,在处理(a)序列数据(如文本、时间序列等)时,tanh 函数可以对神经元的输出进行有效激活,将输出限制在合适的范围内,帮助模型更好地处理序列中的长期依赖关系。假设在一个基于 RNN 的语言模型中,每个时间步的隐藏状态通过 tanh 激活函数来更新,这样可以使隐藏状态的值不会过大或过小,从而更稳定地对文本席列进行建模。
神经网络隐藏层
在一般的多层前馈神经网络的隐藏层中也有应用。
它可以作为激活函数来引入非线性特性,帮助神经网络拟合复杂的函数关系。
与 sigmoid 函数相比, tanh 函数的输出值域更宽,能够提供更强的非线性表达能力,使得神经网络能够更好地学习数据中的复杂模式。
二、手动实现tanh激活函数
isinstance():用于检査一个对象是否是某个特定类(或类型)的实例或者是否属于某几个类(或类型)之一。它返回一个布尔值,即如果对象是指定类(或类型)的实例,则返回True ,否则返回False。
flatten(): 是 numpy 库中 ndarray (多维数组)对象的一个方法,它的主要作用是将多维数组转换为一维数组,即将数组的维度降低到1维。这个过程不会改变原始数组的数据内容,只是改变了数组的形状。
reshape(): 是一种用于改变数组或张量形状的操作。它不会改变数据本身的内容,只是改变了数据的存储形状,使得数据可以按照新的维度结构进行访问和处理。
append():在列表末尾添加一个新元素,这个方法会直接修改原始列表,而不是返回一个修改后的新列表。
# coding:utf8
import torch
import numpy'''
手动实现tanh函数
'''def tanh(x):if isinstance(x, (list, tuple, numpy.ndarray)):result = []if isinstance(x, numpy.ndarray):# 遍历numpy数组中的每个元素进行计算for element in x.flatten():result.append((numpy.exp(element) - numpy.exp(-element)) / (numpy.exp(element) + numpy.exp(-element)))return numpy.array(result).reshape(x.shape)else:# 遍历列表或元组中的每个元素进行计算for element in x:result.append((numpy.exp(element) - numpy.exp(-element)) / (numpy.exp(element) + numpy.exp(-element)))return resultelse:return (numpy.exp(x) - numpy.exp(-x)) / (numpy.exp(x) + numpy.exp(-x))# 示例输入
x = [1, 2, 3]
# torch实现的tanh
print("torch.tanh:",torch.tanh(torch.Tensor(x)))
# 自己实现的tanh
print("diy.tanh:",tanh(x))# 再测试下numpy数组作为输入的情况
numpy_x = numpy.array([1, 2, 3])
print(torch.tanh(torch.Tensor(numpy_x)))
print(tanh(numpy_x))
相关文章:
【NLP 14、激活函数 ② tanh激活函数】
学会钝感力,走向美好的方向 —— 24.12.11 一、tanh激活函数 1. tanh函数的定义 tanh是双曲正切函数(Hyperbolic Tangent),数学表达式为 其函数图像是一个S型曲线,以原点 (0,0) 为中心对称,定…...
前端如何实现签名功能
1.JS实现 前端实现签名功能,通常是通过在页面上创建一个可绘制的区域,用户可以用鼠标或触摸设备进行签名。这个区域通常是一个<canvas>元素,结合JavaScript来处理绘制和保存签名。下面是一个简单的实现步骤: 1.1. 创建HTM…...
若依将数据库更改为SQLite
文章目录 1. 添加依赖项2. 更新配置文件 application-druid.yml2.1. 配置数据源2.2. 配置连接验证 3. 更新 MybatisPlusConfig4. 解决 mapper 中使用 sysdate() 的问题4.1. 修改 BaseEntity4.2. 修改 Mapper 5. 更新 YML 配置 正文开始: 前提条件:在您的…...
CRMEB Pro版v3.2源码全开源+PC端+Uniapp前端+搭建教程
一.介绍 crmeb pro版 v3.2正式发布,全新UI重磅上线,焕然一新,不负期待!页面DIY设计功能全面升级,组件更丰富,样式设计更全面;移动端商家管理,让商城管理更便捷,还从页面…...
Docker 安装 Jenkins:2.346.3
准备:已安装Docker,已配置服务器安全组规则 1581 1、拉取镜像 [rootTseng ~]# docker pull jenkins/jenkins:2.346.3 2.346.3: Pulling from jenkins/jenkins 001c52e26ad5: Pull complete 6b8dd635df38: Pull complete 2ba4c74fd680: Pull complet…...
【OpenCV】模板匹配
理论 模板匹配是一种在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV 带有一个函数 cv.matchTemplate() 。它只是在输入图像上滑动模板图像(如在 2D 卷积中),并比较模板图像下的模板和输入图像的补…...
黑马商城微服务复习(5)
MQ 一、同步调用和异步调用1. 同步调用2. 异步调用 二、RabbitMQ1. 基础使用2. 实际操作 怎么用?3. RabbitMQ虚拟主机 数据隔离4. 在JAVA中实现RabbitMQ5. 交换机种类 一、同步调用和异步调用 1. 同步调用 微服务一旦拆分,必然涉及到服务之间的相互调用ÿ…...
云原生基础设施指南:精通 Kubernetes 核心与高级用法
1. 云原生的诞生 随着互联网规模的不断增长,以及企业对敏捷开发、快速交付和高可用性的需求日益增强,传统的单体架构逐渐暴露出局限性,难以满足现代业务对动态扩展和高效迭代的要求。为此,云原生应运而生。 云原生是为云计算时代…...
人工智能概要
目录 前言1.什么是人工智能(Artificial Intelligence, AI)2.人工智能发展的三次浪潮2.1 人工智能发展的第一次浪潮2.2 人工智能发展的第二次浪潮2.3 人工智能发展的第三次浪潮 3.人工智能发展的必备三要素3.1 数据3.2 算法(algorithm…...
qt QCommandLineParser详解
1、概述 QCommandLineParser是Qt框架中提供的一个类,专门用于解析命令行参数。它简化了命令行参数的处理过程,使得开发者能够轻松定义、解析和验证命令行选项和参数。QCommandLineParser适用于需要从命令行获取输入的控制台应用程序,以及需要…...
力扣 K个一组翻转链表
K个一组翻转链表 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(ne…...
cnocr配置及训练测试
cnocr配置及训练测试 1,相关链接2,已有模型调用测试(1)下载相关模型(2)Cnstd文本检测模型(3)模型调用解析脚本 3,自定义数据集训练测试(1)标签转换…...
解决 Flutter 在 Mac 上的编译错误
解决 Flutter 在 Mac 上的编译错误 在使用 Flutter 进行项目开发并尝试在 Mac 设备上进行编译时,遇到了一系列的错误信息,这些错误信息给项目的构建与部署带来了阻碍。 一、错误详情 在编译过程中,Xcode 输出了大量的信息,其中…...
MR30分布式IO在新能源领域加氢站的应用
导读 氢能被誉为21世纪最具发展潜力的清洁能源,氢能科技创新和产业发展持续得到各国青睐。氢能低碳环保,燃烧的产物只有水,是用能终端实现绿色低碳转型的重要载体。氢能产业链分别为上游制氢、中游储运以及下游用氢。上游制氢工艺目前大部分…...
wxPython中wx.ListCtrl用法(二)
wx.ListCtrl是一个列表组件,可以以列表视图(list view)、报表视图(report view)、图标视图(icon view)和小图标视图(small icon view)等多种模式显示列表。 一、方法 __…...
kubernetes 资源汇总
kubernetes 资源汇总 官网 英文文档 官方英文文档 中文文档 官方中文文档 github github源码地址 培训认证 也就是linux基金会的认证,上面也提供培训课程 下载资源 官网下载资源,国内的话k8s镜像下载不了,要去镜像站 在线练习 killer…...
每日一题(对标gesp三级答案将在第二天公布)
编程题 题目描述: 小杨为数字4,5,6和7设计了一款表示形式,每个数字占用了66的网格。数字4,5,6和7的表示形式如下(此处自行设计复杂一些的表示形式示例): 数字4: …. …. …. …. *… 数字5: …...
让 Win10 上网本 Debug 模式 QUDPSocket 信号槽 收发不丢包的方法总结
在前两篇文章里,我们探讨了不少UDP丢包的解决方案。经过几年的摸索测试,其实方法非常简单, 无需修改代码。 1. Windows 下设置UDP缓存 这个方法可以一劳永逸解决UDP的收发丢包问题,只要添加注册表项目并重启即可。即使用Qt的信号与槽&#…...
Python爬虫之使用BeautifulSoup进行HTML Document文档的解析
BeautifulSoup 是一个用于解析 HTML 和 XML 文档的 Python 库,它为开发者提供了一种简单的方式来查找、遍历和修改文档树。BeautifulSoup 特别擅长处理不规则或格式不佳的标记语言,可以自动更正无效的 HTML,因此在网页抓取(Web Sc…...
vue.config.js配置参数说明新手教程
这篇文章主要是对vue.config.js配置文件的主要参数进行一下说明,方便使用时的查询, 下面进行介绍 1、vue.config.js vue.config.js 是一个可选的配置文件,如果项目的 (和 package.json 同级的) 根目录中存在这个文件,那么它会被…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
