OpenCV相机标定与3D重建(18)根据基础矩阵(Fundamental Matrix)校正两组匹配点函数correctMatches()的使用
- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
优化对应点的坐标。
cv::correctMatches 是 OpenCV 库中的一个函数,用于根据基础矩阵(Fundamental Matrix)校正两组匹配点。该函数通过最小化重投影误差来优化匹配点的位置,从而提高特征点匹配的准确性。
函数原型
void cv::correctMatches
(InputArray F,InputArray points1,InputArray points2,OutputArray newPoints1,OutputArray newPoints2
)
参数
- 参数F:3x3 的基础矩阵。
- 参数points1:包含第一组点的 1xN 数组。
- 参数points2:包含第二组点的 1xN 数组。
- 参数newPoints1:优化后的第一组点。
- 参数newPoints2:优化后的第二组点。
该函数实现了最优三角化方法(详见《Multiple View Geometry》[115])。对于每个给定的点对应关系points1[i] <-> points2[i] 和一个基础矩阵 F,它计算校正后的对应关系 newPoints1[i] <-> newPoints2[i],以最小化几何误差 d ( p o i n t s 1 [ i ] , n e w P o i n t s 1 [ i ] ) 2 + d ( p o i n t s 2 [ i ] , n e w P o i n t s 2 [ i ] ) 2 d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2 d(points1[i],newPoints1[i])2+d(points2[i],newPoints2[i])2(其中 d ( a , b ) d(a,b) d(a,b) 是点 a 和点 b 之间的几何距离),同时满足极线约束 n e w P o i n t s 2 T ⋅ F ⋅ n e w P o i n t s 1 = 0 newPoints2^T \cdot F \cdot newPoints1 = 0 newPoints2T⋅F⋅newPoints1=0
使用场景
- 立体视觉:在双目或多目视觉系统中,用于提高特征点匹配的精度。
- 结构光扫描:在校正三维重建过程中使用的匹配点时非常有用。
- 运动估计:在基于特征点的运动估计任务中,可以提高估计的准确性。
代码示例
#include <iostream>
#include <opencv2/opencv.hpp>int main()
{// 假设我们已经得到了基础矩阵 F 和两组匹配点 points1 和 points2cv::Mat F = ( cv::Mat_< double >( 3, 3 ) << 0.998, -0.062, 0.007, 0.062, 0.998, -0.05, 0.007, 0.05, 1.0 );// 定义一些匹配点std::vector< cv::Point2f > points1 = { cv::Point2f( 100, 150 ), cv::Point2f( 200, 250 ) };std::vector< cv::Point2f > points2 = { cv::Point2f( 105, 155 ), cv::Point2f( 205, 255 ) };// 创建输出容器std::vector< cv::Point2f > newPoints1;std::vector< cv::Point2f > newPoints2;// 优化对应点的坐标cv::correctMatches( F, points1, points2, newPoints1, newPoints2 );// 打印结果for ( size_t i = 0; i < newPoints1.size(); ++i ){std::cout << "Original Points: (" << points1[ i ].x << ", " << points1[ i ].y << ") -> (" << points2[ i ].x << ", " << points2[ i ].y << ")\n";std::cout << "Optimized Points: (" << newPoints1[ i ].x << ", " << newPoints1[ i ].y << ") -> (" << newPoints2[ i ].x << ", " << newPoints2[ i ].y << ")\n";}return 0;
}
运行结果
Original Points: (100, 150) -> (105, 155)
Optimized Points: (-39.0672, 88.7914) -> (146.107, 75.3975)
Original Points: (200, 250) -> (205, 255)
Optimized Points: (-46.7855, 188.856) -> (259.562, 81.6427)
相关文章:
OpenCV相机标定与3D重建(18)根据基础矩阵(Fundamental Matrix)校正两组匹配点函数correctMatches()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 优化对应点的坐标。 cv::correctMatches 是 OpenCV 库中的一个函数,用于根据基础矩阵(Fundamental Matrix)校…...
python脚本:向kafka数据库中插入测试数据
# coding:utf-8 import datetime import json import random import timefrom kafka import KafkaProducer生产者demo向branch-event主题中循环写入10条json数据注意事项:要写入json数据需加上value_serializer参数,如下代码producer KafkaProducer(val…...
10. 高效利用Excel导入报警信息
高效利用Excel导入报警信息 1.添加报警服务器2.导出报警EXCEL3.报警控件使用1.添加报警服务器 右键项目名称——Add New Sever——Tag Alarm and Event Sever 给报警服务器命名Alarm 给报警服务器分配优先级。如果想要使能历史的话需要和SQL sever配合使用,之前写过。记住这…...
k8s service 配置AWS nlb load_balancing.cross_zone.enabled
在Kubernetes中配置NLB(Network Load Balancer)的跨区域负载均衡(cross-zone load balancing),需要使用服务注解(service annotations)来实现。根据AWS官方文档,以下是配置NLB跨区域…...
国标GB28181网页直播平台EasyGBS国标GB28181-2016协议解读:媒体流保活机制
GB28181-2016在为视频监控系统提供统一的网络视频传输协议。这项标准主要用于公共安全视频监控系统,支持视频监控设备间的互联互通。其主要应用场景包括城市公共安全监控、交通监控、消防监控等。 GB28181-2016标准中的媒体流保活机制,主要是在确保视频…...
面试经验分享 | 杭州某安全大厂渗透测试岗
目录: 所面试的公司:某安全大厂 所在城市:杭州 面试职位:渗透测试工程师 面试过程: 面试官的问题: 1、面试官开始就问了我,为什么要学网络安全? …...
26. Three.js案例-自定义多面体
26. Three.js案例-自定义多面体 实现效果 知识点 WebGLRenderer WebGLRenderer 是 Three.js 中用于渲染场景的主要类。它支持 WebGL 渲染,并提供了多种配置选项。 构造器 new THREE.WebGLRenderer(parameters) 参数类型描述parametersObject可选参数对象&…...
HarmonyOS-高级(四)
文章目录 应用开发安全应用DFX能力介绍HiLog使用指导HiAppEvent 🏡作者主页:点击! 🤖HarmonyOS专栏:点击! ⏰️创作时间:2024年12月11日11点18分 应用开发安全 应用隐私保护 隐私声明弹窗的作…...
Qt-chart 画折线图(以时间为x轴)
上图 代码 #include <iostream> #include <random> #include <qcategoryaxis.h>void MainWindow::testLine() {//1、创建图表视图QChartView* view new QChartView(this);//2.创建图表QChart* chart new QChart();//3.将图表设置给图表视图view->setCh…...
【入门】晶晶的补习班
描述 晶晶上初中了。妈妈认为晶晶应该更加用功学习,所以晶晶除了上学之外,还要参加妈妈为她报名的各科补习班。晶晶的妈妈给了晶晶的下周每天上补习班的小时数,晶晶同学想知道,下周平均一天要上多少小时的补习班(结果…...
c#动态更新替换json节点
需求项目json作为主模板,会应用到多个子模版,当后续项目变更只需要修改主模板中节点,并且能够动态更新到原来的子模版中去。 主模板示例: {"A": {"A1": "","A2": false,"A3"…...
cf补题日记
听退役选手建议,补40道C、D题。 (又又又开新专题。。。 进度:2/40 原题1: You are given a string ss, consisting of digits from 00 to 99. In one operation, you can pick any digit in this string, except for 00 or the…...
Golang学习笔记_01——包
文章目录 包(package)1. 定义2. 导入3. 初始化4. 可见性4. 注意4.1 包声明4.2 main包4.3 包的导入4.4标识符的可见性4.5 包的初始化4.6 避免命名冲突4.7 包的路径和名称4.8 匿名导入4.9 使用Go Modules 包(package) 在Golang&…...
RPC设计--应用层缓冲区,TcpBuffer
为什么需要应用层的buffer 为了方便数据处理,从fd上直接读写然后做包的组装、拆解不够方便方便异步发送,将数据写到应用层buffer后即可返回,让epoll即event_loop去异步发送。提高发送效率,多个小包可合并发送 buffer 设计 可以…...
基于单片机智能控制的饮水机控制系统
基于单片机智能控制的饮水机控制系统,以STC89C52单片机为核心,利用防水型DS18B20温度传感器对饮水机内的水温做出检测,其次利用水位传感器对饮水机内的水量做出检测,并显示在OLED液晶显示屏上。用户在使用饮水机时,通过…...
路径规划 | 改进的人工势场法APF算法进行路径规划(Matlab)
目录 效果一览基本介绍程序设计参考文献 效果一览 基本介绍 改进的人工势场法(APF)路径规划算法 在路径规划中,人工势场法(APF)是一种常见的方法,但传统的APF算法容易陷入局部极小值,导致路径规…...
【云原生知识】Kubernets实践-前端服务如何访问后端服务
文章目录 概述步骤1:部署后端服务步骤2:配置Nginx步骤3:创建Nginx服务总结 如何确保 Nginx 能持续访问后端服务?相关文献 概述 假设你正在使用Kubernetes作为容器云平台,以下是如何配置Nginx以及相关服务,…...
【ubuntu18.04】ubuntu18.04安装EasyCwmp操作说明
参考链接 Tutorial – EasyCwmphttps://easycwmp.org/tutorial/ EasyCwmp 介绍 EasyCwmp 设计包括 2 个部分: EasyCwmp 核心:它包括 TR069 CWMP 引擎,负责与 ACS 服务器的通信。它是用 C 语言开发的。EasyCwmp DataModel:它包…...
使用Jackson库的ObjectMapper类将JSON字符串转换为Java的Map对象
本教程展示如何使用Jackson库的ObjectMapper类将JSON字符串转换为Java的Map对象。 下面是具体的步骤和代码示例,包括添加依赖项以及编写用于反序列化JSON字符串为Map的代码。 添加依赖项 首先,在你的项目中添加Jackson库的依赖。如果你使用的是Maven构…...
ASP.NET Core实现鉴权授权的几个库
System.IdentityModel.Tokens.Jwt 和 Microsoft.AspNetCore.Authentication.JwtBearer 是两个常用的库,分别用于处理 JWT(JSON Web Token)相关的任务。它们在功能上有一定重叠,但侧重点和使用场景有所不同。 1. System.IdentityM…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
