LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程
欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/144353087
免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。
VLMEvalKit 是大型视觉语言模型设计的开源评估工具包,由 Open Compass 团队开发,它支持一键式评估体验,无需繁琐的数据准备工作,能够对多种视觉语言模型进行评估,并覆盖了多样化的任务场景。
VLMEvalKit:GitHub - open-compass/VLMEvalKit
1. 运行环境
准备 VLMEvalKit 工程环境:
- Python 使用 3.11
- 建议预先安装 PyTorch、Transformers、flash-attn 等基础 Python 库,避免冲突。
- 注意:默认
vlmeval
库依赖较低版本的 Torch,需要重新升级 Torch 库。
git clone https://github.com/open-compass/VLMEvalKit
cd VLMEvalKitconda create -n vlm_eval_kit python=3.11
conda activate vlm_eval_kit# 预先安装
pip install torch torchvision torchaudio # 最新版本
pip install transformers==4.45.0
# pip install flash-attn (建议手动安装)# 其次安装
pip install -r requirements.txt
pip install -e .
# 重新升级 torch 库
pip uninstall torch
pip install torch torchvision torchaudio # 最新版本# 最后安装
pip install ipdb
pip install einops transformers_stream_generator
安装
flash-attn
参考:使用 vLLM 部署 Qwen2-VL 多模态大模型 (配置 FlashAttention) 教程
MME(Multimodal Model Evaluation) 是由腾讯优图实验室和厦门大学联合开发,多模态大型语言模型评估基准,包含 14 个子任务,覆盖从粗粒度到细粒度的对象识别、常识推理、数值计算、文本翻译和代码推理等多个方面,全面评估模型的感知和认知能力。
评测 MME 多模态数据集:
LLaVA-CoT
测试,请参考 LLaVA-CoT(o1) 推理模型 测试
python3 run.py --data MME --model Qwen2-VL-7B-Instruct --verbose
python3 run.py --data MME --model Llama-3.2-11B-Vision-Instruct --verbose
# python3 run.py --data MME --model LLaVA-CoT --verbose
torchrun --nproc-per-node=8 run.py --data MME --model LLaVA-CoT --verbose
Llama-3.2-11B-Vision-Instruct 显存占用 23446MiB / 81920MiB,即 23 G 左右
评估结果:
[2024-12-09 14:51:21] INFO - run.py: main - 400:
--------------------- --------
perception 1675.9
reasoning 640.714
OCR 155
artwork 151.25
celebrity 149.412
code_reasoning 160
color 180
commonsense_reasoning 155.714
count 160
existence 195
landmark 185
numerical_calculation 125
position 155
posters 182.993
scene 162.25
text_translation 200
--------------------- --------
输出结果 outputs/Qwen2-VL-7B-Instruct
,即:
outputs/Qwen2-VL-7B-Instruct
├── Qwen2-VL-7B-Instruct_MME.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME.xlsx
├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx
├── Qwen2-VL-7B-Instruct_MME_score.csv -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_score.csv
└── T20241209_Ga18f5d69├── Qwen2-VL-7B-Instruct_MME.xlsx├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx└── Qwen2-VL-7B-Instruct_MME_score.csv
其他参考 Llama-3.2-11B-Vision-Instruct
的效果
[2024-12-09 16:33:49] INFO - run.py: main - 400:
--------------------- --------
perception 1343.25
reasoning 325.714
OCR 125
artwork 87
celebrity 127.353
code_reasoning 27.5
color 143.333
commonsense_reasoning 110.714
count 143.333
existence 190
landmark 110.5
numerical_calculation 115
position 123.333
posters 153.401
scene 140
text_translation 72.5
--------------------- --------
2. 工程配置
2.1 环境变量(Env)
构建环境变量,在 VLMEvalKit 中,编写 .env
格式文件,指定 模型下载路径(HF_HOME
),和 数据集下载路径(LMUData
),即:
HF_HOME="[your path]/huggingface/"
LMUData="[your path]/huggingface/LMUData/"
使用
from dotenv import dotenv_values
库,进行调用,参考vlmeval/smp/misc.py
2.2 评估模型(Env)
VLMEvalKit 的模型,参考 vlmeval/config.py
,包括现有的主流模型,位置默认是 HuggingFace 的下载路径 $HF_HOME
,即:
model_groups = [ungrouped, api_models,xtuner_series, qwen_series, llava_series, internvl_series, yivl_series,xcomposer_series, minigpt4_series, idefics_series, instructblip_series,deepseekvl_series, janus_series, minicpm_series, cogvlm_series, wemm_series,cambrian_series, chameleon_series, video_models, ovis_series, vila_series,mantis_series, mmalaya_series, phi3_series, xgen_mm_series, qwen2vl_series, slime_series, eagle_series, moondream_series, llama_series, molmo_series,kosmos_series, points_series, nvlm_series, vintern_series, h2ovl_series, aria_series,smolvlm_series
]
如果模型无法下载,例如 Llama-3.2-11B-Vision-Instruct
,修改模型路径 vlmeval/config.py
,调用位置 vlmeval/vlm/llama_vision.py
,即:
# vlmeval/config.py
llama_series={# meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'Llama-3.2-11B-Vision-Instruct': partial(llama_vision, model_path='[your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'),'LLaVA-CoT': partial(llama_vision, model_path='[your path]/huggingface/Xkev/Llama-3.2V-11B-cot'),'Llama-3.2-90B-Vision-Instruct': partial(llama_vision, model_path='meta-llama/Llama-3.2-90B-Vision-Instruct'),
}# vlmeval/vlm/llama_vision.py
class llama_vision(BaseModel):INSTALL_REQ = FalseINTERLEAVE = False# This function is used to split Llama-3.2-90Bdef split_model(self):# ...# meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instructdef __init__(self, model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', **kwargs):
默认与 HuggingFace 下载路径一致,需要指定,则修改
vlmeval/config.py
配置。
2.3 评估集(Env)
VLMEvalKit 的数据,参考 vlmeval/dataset/__init__.py
,主要支持 IMAGE_DATASET
、VIDEO_DATASET
、TEXT_DATASET
、CUSTOM_DATASET
、DATASET_COLLECTION
,即:
# run.py
dataset = build_dataset(dataset_name, **dataset_kwargs)# vlmeval/dataset/__init__.py
DATASET_CLASSES = IMAGE_DATASET + VIDEO_DATASET + TEXT_DATASET + CUSTOM_DATASET + DATASET_COLLECTIONdef build_dataset(dataset_name, **kwargs):for cls in DATASET_CLASSES:if dataset_name in cls.supported_datasets():return cls(dataset=dataset_name, **kwargs)
以 MME 为例,调用的是 vlmeval/dataset/image_yorn.py
数据集,即
DATASET_URL = {'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv','HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv','POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv','AMBER': 'https://huggingface.co/datasets/yifanzhang114/AMBER_base64/resolve/main/AMBER.tsv',
}
基类 ImageBaseDataset
负责处理逻辑:
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):return list(cls.DATASET_URL)
具体位置参考,位于 LMUData
变量之中,默认位置 ~/LMUData/images/MME
,即:
def LMUDataRoot():if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):return os.environ['LMUData']home = osp.expanduser('~')root = osp.join(home, 'LMUData')os.makedirs(root, exist_ok=True)return root
3. 雷达图
绘制雷达图,参考 scripts/visualize.ipynb
,使用 OpenVLM.json
全量的 MLLM 评估结果,进行绘制,效果如下:
Bug:
[your path]/miniconda3_62/envs/vlm_eval_kit/lib/python3.11/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),
即重新安装 torch 即可:
pip uninstall torch numpy
pip3 install torch torchvision torchaudio
相关文章:
LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144353087 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 VLMEva…...
数据结构(Queue队列)
前言: 在计算机科学中,数据结构是构建高效算法和程序的基础,而队列(Queue)作为一种经典的线性数据结构,具有重要的地位。与栈(Stack)不同,队列遵循“先进先出”…...
Qt 图形框架下图形拖动后位置跳动问题
在使用Qt 的图形框架QGraphicsScene,QGraphicsView实现图形显示时。遇到一个很棘手的BUG。 使用的图形是自定义的QGraphicsObject的子类。 现象是将图形添加到画布上之后,用鼠标拖动图形,图形能正常改变位置,当再次用鼠标点击图…...
【Linux篇】走进Linux — 开启开源操作系统之旅
文章目录 初识Linux一.Linux的起源与发展二.Linux的特点三.Linux的应用四.Linux的发行版本 Linux环境搭建一.Linux环境的搭建方式二.购买云服务器三.使用XShell远程登陆到Linux 初识Linux 一.Linux的起源与发展 1.初始动机: Linux是一个功能强大的开源操作系统&am…...
如何利用DBeaver配置连接MongoDB和人大金仓数据库
最近根据国产化要求,需要使用国产数据库,但习惯使用DBeaver连接各种成熟的商业或开源数据库。因此,就想着如何继续基于该工具,连接MongoDB和人大金仓数据库,查了半天很多地方说法不统一,所以自己就简单整理…...
Android 车载虚拟化底层技术-Kernel 5.10 -Android12(multi-cards)技术实现
详细代码实现见 Android Display Graphics系列文章-汇总Android Display Graphics系列文章-汇总 Android Display Graphics系列文章-汇总 Android Display Graphics系列文章-汇总 本文主要包括部分: 一、Android12的Kernel 5.10版本 1.1 Kernel 5…...
Qt之点击鼠标右键创建菜单栏使用(六)
Qt开发 系列文章 - menu(六) 目录 前言 一、示例演示 二、菜单栏 1.MenuBar 2.Menu 总结 前言 QMainWindow是一个为用户提供主窗口程序的类,包含一个菜单栏(menubar)、多个工具栏(toolbars)、一个状态栏(status…...
开发一套SDK 第一弹
自动安装依赖包 添加条件使能 #ex: filetypesh bash_ls 识别 达到预期,多个硬件环境 等待文件文件系统挂在完成 或者创建 /sys/class/ 属性文件灌入配置操作 AI 提供的 netlink 调试方法,也是目前主流调用方法,socket yyds #include <linux/module.h> #include <linux…...
sftp+sshpass
实现场景,要求客户端定时将本地的日志文件传输到服务器。 工作环境ubuntu,注意不通操作系统的版本不通,依赖的工具的版本也有所不同 实现目标需要客户端满足安装工具: 1、下载安装sshpass ---安装命令:sudo apt-ge…...
【机器学习与数据挖掘实战】案例01:基于支持向量回归的市财政收入分析
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数…...
Idea实现定时任务
定时任务 什么是定时任务? 可以自动在项目中根据设定的时长定期执行对应的操作 实现方式 Spring 3.0 版本之后自带定时任务,提供了EnableScheduling注解和Scheduled注解来实现定时任务功能。 使用SpringBoot创建定时任务非常简单,目前主要…...
Linux 安装NFS共享文件夹
程序默认使用2049端口,如果被占用需要修改端口104设置为服务端 122设置为客户端 一、在线安装(服务端和客户端执行) yum install nfs-utils rpcbind -y二、配置启动参数(服务端执行) 104服务器/mnt路径下创建shareda…...
bash 判断内存利用率是否高于60%
在 Bash 脚本中,可以通过 free 命令获取内存利用率,然后结合 awk 和条件判断语句实现监控内存利用率是否高于 60%。以下是一个示例脚本: 1. 示例脚本 #!/bin/bash# 获取总内存和已使用内存 total_mem$(free | awk /Mem:/ {print $2}) used_…...
推送(push)项目到gitlab
文章目录 1、git init1.1、在当前目录中显示隐藏文件:1.2、查看已有的远程仓库1.3、确保你的本地机器已经生成了 SSH 密钥:1.4、将生成的公钥文件(通常位于 ~/.ssh/id_rsa.pub)复制到 GitLab 的 SSH 设置中:1.5、测试 …...
centos9升级OpenSSH
需求 Centos9系统升级OpenSSH和OpenSSL OpenSSH升级为openssh-9.8p1 OpenSSL默认为OpenSSL-3.2.2(根据需求进行升级) 将源码包编译为rpm包 查看OpenSSH和OpenSSL版本 ssh -V下载源码包并上传到服务器 openssh最新版本下载地址 wget https://cdn.openb…...
硬件成本5元-USB串口采集电表数据完整方案-ThingsPanel快速入门
ThingsPanel开源物联网平台支持广泛的协议,灵活自由,本文介绍ThingsPanel通过串口来采集电表数据,简单易行,成本低廉,适合入门者学习试验,也适合一些特定的应用场景做数据采集。 适用场景: 降低…...
在AWS EMR上用Hive、Spark、Airflow构建一个高效的ETL程序
在AWS EMR(Elastic MapReduce)上构建一个高效的ETL程序,使用Hive作为数据仓库,Spark作为计算引擎,Airflow作为调度工具时,有几个关键的设计与实施方面需要注意。 在AWS EMR上构建高效的ETL程序,…...
前端(四)css选择器、css的三大特性
css选择器、css的三大特性 文章目录 css选择器、css的三大特性一、css介绍二、css选择器2.1 基本选择器2.2 组合选择器2.3 交集并集选择器2.4序列选择器2.5属性选择器2.6伪类选择器2.7伪元素选择器 三、css三大特性3.1 继承性3.2 层叠性3.3 优先级 一、css介绍 CSS全称为Casca…...
vscode 打开 setting.json
按下Ctrl Shift P(Windows/Linux)或Cmd Shift P(Mac)来打开命令面板。输入open settings,然后选择 Open User Settings(JSON)。打开settings.json文件 ------修改设置-----: 1、 html代码的行长度&am…...
关于网络安全攻防演化博弈的研究小议
1. 拉高视角,从宏观看网络安全攻防 伴随着信息化的发展,网络安全的问题就一直日益突出,与此同时,网络安全技术也成为研究热点,直到今日也没有停止。 从微观来看,网络安全技术研究指的是针对某项或某几项…...
【FAQ】HarmonyOS SDK 闭源开放能力 —Push Kit(7)
1.问题描述: 推送通知到手机,怎么配置拉起应用指定的页面? 解决方案: 1、如果点击通知栏打开默认Ability的话, actionType可以设置为0, 同时可以在.clickAction.data中,指定待跳转的page页面…...
远程桌面防护的几种方式及优缺点分析
远程桌面登录是管理服务器最主要的方式,于是很多不法分子打起了远程桌面的歪心思。他们采用暴力破解或撞库的方式破解系统密码,悄悄潜入服务器而管理员不自知。 同时远程桌面服务中的远程代码执行漏洞也严重威胁着服务器的安全,攻击者可以利…...
ASP.NET|日常开发中连接Sqlite数据库详解
ASP.NET|日常开发中连接Sqlite数据库详解 前言一、安装和引用相关库1.1 安装 SQLite 驱动1.2 引用命名空间 二、配置连接字符串2.1 连接字符串的基本格式 三、建立数据库连接3.1 创建连接对象并打开连接 四、执行数据库操作4.1 创建表(以简单的用户表为例…...
python的自动化seleium安装配置(包含谷歌的chromedriver)
目录 前言介绍 一、下载谷歌浏览器chromedriver (一)查看谷歌浏览器版本 (二)去官网下载谷歌驱动(chromdriver) (三)谷歌浏览器安装位置解压 (四)配置环境变量 二、pychram里下载安装selenium 三、测试selenium是否成功 前言介绍 Selenium是一个开源的自动化测试工具&…...
QT requested database does not belong to the calling thread.线程中查询数据报错
QT requested database does not belong to the calling thread.线程中查询数据报错 QString name "ttx"; QSqlQueryModel* sql_model; QString sql_comm QString("select * from dssb_moddve_loddt_tab where name%1").arg(name); sql_model->set…...
服务器一般装什么系统?
在服务器管理中,操作系统的选择是一个关键因素,它直接影响到服务器的稳定性、性能和可维护性。那么为什么有些服务器选择Linux,而不是Windows?选择合适的操作系统对服务器的性能和安全性有多么重要? 在众多操作系统中…...
Linux vi/vim 编辑器使用教程
Linux vi/vim 编辑器使用教程 引言 Linux 系统中的 vi 和 vim 是非常强大的文本编辑器,它们以其高效性和灵活性而闻名。vim 是 vi 的增强版,提供了更多的功能和改进的用户界面。本文将详细介绍 vi/vim 的基本用法,包括打开文件、编辑文本、…...
JavaEE多线程案例之阻塞队列
上文我们了解了多线程案例中的单例模式,此文我们来探讨多线程案例之阻塞队列吧 1. 阻塞队列是什么? 阻塞队列是⼀种特殊的队列.也遵守"先进先出"的原则. 阻塞队列是⼀种线程安全的数据结构,并且具有以下特性: 当队列满的时候,继续⼊队列就会…...
梳理你的思路(从OOP到架构设计)_基本OOP知识04
目录 1、 主动型 vs.基於被动型 API 1)卡榫函数实现API 2)API的分类 3)回顾历史 4)API >控制力 2、 结语&复习: 接口与类 1)接口的表示 2)Java的接口表示 1、 主动型 vs.基於被动…...
nginx反向代理(负载均衡)
nginx的代理 代理 四层代理 七层代理 正向代理和缓存的配置方式 🐭🐮🐯🐰🐉🐍🐴🐑🐒🐔🐶🐷 反向代理》负载均衡 负载均衡ÿ…...
海安做网站的公司/网推公司
1、汉字编码原理 到底怎么办到随机生成汉字的呢?汉字从哪里来的呢?是不是有个后台数据表,其中存放了所需要的所有汉字,使用程序随机取出几个汉字组合就行了呢?使用后台数据库先将所有汉字存起来使用时随机取出…...
ui设计培训一般多久/嘉兴百度seo
2019独角兽企业重金招聘Python工程师标准>>> 当前日志系统常用的有elk(elasticsearch logstash kibana),不过很多公司不喜欢用logstash,而会用很多其他性能好、资源利用少的日志采集软件,其中rsyslog会是很…...
ui界面设计师/网站seo优化的目的
网络工程师成长日记371-卡夫食品中国有限公司项目回忆录 这是我的第371篇原创文章,记录网络工程师行业的点点滴滴,结交IT行业有缘之人 今天,我与老大一起去中大国际,为卡夫食品中国有限公司做项目尽管是项目不大,但第一…...
网站如何有排名/一个新手怎么做推广
虚拟存储实现的思想是什么?(以分页为例) 虚拟存储是利用大容量的外存来扩充了内存,也就是说产生了一个比实际物理内存大得多的一个虚拟地址空间,也就由此产生了逻辑地址和物理地址,当处理器执行某一条指令…...
全屏网站宽度/图片在线转外链
1)、把<script>标签放在<head>中意味着必须等到全部的js代码都下载解析和执行完成以后,才开始展现页面内容,为避免这个问题一般把js代码全部放在<body>元素内容后面 2)、script标签不带defer和async属性&#…...
蒙古网站群建设/百度邮箱注册入口
首先了解两个概念,胜者树和败者树: 胜者树和败者树都是二叉排序树,是树形选择排序的一种变形。每个叶子节点相当于一位选手,每个中间结点相当于一场比赛,每一层相当于一轮比赛。胜者树的中间结点记录的是胜者的标号&a…...