当前位置: 首页 > news >正文

LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/144353087

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


VLMEvalKit

VLMEvalKit 是大型视觉语言模型设计的开源评估工具包,由 Open Compass 团队开发,它支持一键式评估体验,无需繁琐的数据准备工作,能够对多种视觉语言模型进行评估,并覆盖了多样化的任务场景。

VLMEvalKit:GitHub - open-compass/VLMEvalKit


1. 运行环境

准备 VLMEvalKit 工程环境:

  • Python 使用 3.11
  • 建议预先安装 PyTorch、Transformers、flash-attn 等基础 Python 库,避免冲突。
  • 注意:默认 vlmeval 库依赖较低版本的 Torch,需要重新升级 Torch 库。
git clone https://github.com/open-compass/VLMEvalKit
cd VLMEvalKitconda create -n vlm_eval_kit python=3.11
conda activate vlm_eval_kit# 预先安装
pip install torch torchvision torchaudio  # 最新版本
pip install transformers==4.45.0
# pip install flash-attn (建议手动安装)# 其次安装
pip install -r requirements.txt
pip install -e .
# 重新升级 torch 库
pip uninstall torch
pip install torch torchvision torchaudio  # 最新版本# 最后安装
pip install ipdb
pip install einops transformers_stream_generator

安装 flash-attn 参考:使用 vLLM 部署 Qwen2-VL 多模态大模型 (配置 FlashAttention) 教程

MME(Multimodal Model Evaluation) 是由腾讯优图实验室和厦门大学联合开发,多模态大型语言模型评估基准,包含 14 个子任务,覆盖从粗粒度到细粒度的对象识别、常识推理、数值计算、文本翻译和代码推理等多个方面,全面评估模型的感知和认知能力。

评测 MME 多模态数据集:

  • LLaVA-CoT 测试,请参考 LLaVA-CoT(o1) 推理模型 测试
python3 run.py --data MME --model Qwen2-VL-7B-Instruct --verbose
python3 run.py --data MME --model Llama-3.2-11B-Vision-Instruct --verbose
# python3 run.py --data MME --model LLaVA-CoT --verbose
torchrun --nproc-per-node=8 run.py --data MME --model LLaVA-CoT --verbose

Llama-3.2-11B-Vision-Instruct 显存占用 23446MiB / 81920MiB,即 23 G 左右

评估结果:

[2024-12-09 14:51:21] INFO - run.py: main - 400: 
---------------------  --------
perception             1675.9
reasoning               640.714
OCR                     155
artwork                 151.25
celebrity               149.412
code_reasoning          160
color                   180
commonsense_reasoning   155.714
count                   160
existence               195
landmark                185
numerical_calculation   125
position                155
posters                 182.993
scene                   162.25
text_translation        200
---------------------  --------

输出结果 outputs/Qwen2-VL-7B-Instruct,即:

outputs/Qwen2-VL-7B-Instruct
├── Qwen2-VL-7B-Instruct_MME.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME.xlsx
├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx
├── Qwen2-VL-7B-Instruct_MME_score.csv -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_score.csv
└── T20241209_Ga18f5d69├── Qwen2-VL-7B-Instruct_MME.xlsx├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx└── Qwen2-VL-7B-Instruct_MME_score.csv

其他参考 Llama-3.2-11B-Vision-Instruct 的效果

[2024-12-09 16:33:49] INFO - run.py: main - 400: 
---------------------  --------
perception             1343.25
reasoning               325.714
OCR                     125
artwork                  87
celebrity               127.353
code_reasoning           27.5
color                   143.333
commonsense_reasoning   110.714
count                   143.333
existence               190
landmark                110.5
numerical_calculation   115
position                123.333
posters                 153.401
scene                   140
text_translation         72.5
---------------------  --------

2. 工程配置

2.1 环境变量(Env)

构建环境变量,在 VLMEvalKit 中,编写 .env 格式文件,指定 模型下载路径(HF_HOME),和 数据集下载路径(LMUData),即:

HF_HOME="[your path]/huggingface/"
LMUData="[your path]/huggingface/LMUData/"

使用 from dotenv import dotenv_values 库,进行调用,参考 vlmeval/smp/misc.py

2.2 评估模型(Env)

VLMEvalKit 的模型,参考 vlmeval/config.py,包括现有的主流模型,位置默认是 HuggingFace 的下载路径 $HF_HOME,即:

model_groups = [ungrouped, api_models,xtuner_series, qwen_series, llava_series, internvl_series, yivl_series,xcomposer_series, minigpt4_series, idefics_series, instructblip_series,deepseekvl_series, janus_series, minicpm_series, cogvlm_series, wemm_series,cambrian_series, chameleon_series, video_models, ovis_series, vila_series,mantis_series, mmalaya_series, phi3_series, xgen_mm_series, qwen2vl_series, slime_series, eagle_series, moondream_series, llama_series, molmo_series,kosmos_series, points_series, nvlm_series, vintern_series, h2ovl_series, aria_series,smolvlm_series
]

如果模型无法下载,例如 Llama-3.2-11B-Vision-Instruct,修改模型路径 vlmeval/config.py,调用位置 vlmeval/vlm/llama_vision.py,即:

# vlmeval/config.py
llama_series={#  meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'Llama-3.2-11B-Vision-Instruct': partial(llama_vision, model_path='[your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'),'LLaVA-CoT': partial(llama_vision, model_path='[your path]/huggingface/Xkev/Llama-3.2V-11B-cot'),'Llama-3.2-90B-Vision-Instruct': partial(llama_vision, model_path='meta-llama/Llama-3.2-90B-Vision-Instruct'),
}# vlmeval/vlm/llama_vision.py
class llama_vision(BaseModel):INSTALL_REQ = FalseINTERLEAVE = False# This function is used to split Llama-3.2-90Bdef split_model(self):# ...# meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instructdef __init__(self, model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', **kwargs):

默认与 HuggingFace 下载路径一致,需要指定,则修改 vlmeval/config.py 配置。

2.3 评估集(Env)

VLMEvalKit 的数据,参考 vlmeval/dataset/__init__.py,主要支持 IMAGE_DATASETVIDEO_DATASETTEXT_DATASETCUSTOM_DATASETDATASET_COLLECTION,即:

# run.py
dataset = build_dataset(dataset_name, **dataset_kwargs)# vlmeval/dataset/__init__.py
DATASET_CLASSES = IMAGE_DATASET + VIDEO_DATASET + TEXT_DATASET + CUSTOM_DATASET + DATASET_COLLECTIONdef build_dataset(dataset_name, **kwargs):for cls in DATASET_CLASSES:if dataset_name in cls.supported_datasets():return cls(dataset=dataset_name, **kwargs)

以 MME 为例,调用的是 vlmeval/dataset/image_yorn.py 数据集,即

DATASET_URL = {'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv','HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv','POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv','AMBER': 'https://huggingface.co/datasets/yifanzhang114/AMBER_base64/resolve/main/AMBER.tsv',
}

基类 ImageBaseDataset 负责处理逻辑:

# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):return list(cls.DATASET_URL)

具体位置参考,位于 LMUData 变量之中,默认位置 ~/LMUData/images/MME,即:

def LMUDataRoot():if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):return os.environ['LMUData']home = osp.expanduser('~')root = osp.join(home, 'LMUData')os.makedirs(root, exist_ok=True)return root

3. 雷达图

绘制雷达图,参考 scripts/visualize.ipynb,使用 OpenVLM.json 全量的 MLLM 评估结果,进行绘制,效果如下:

Img


Bug:

[your path]/miniconda3_62/envs/vlm_eval_kit/lib/python3.11/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()),  # torch.device('cpu'),UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()),  # torch.device('cpu'),

即重新安装 torch 即可:

pip uninstall torch numpy
pip3 install torch torchvision torchaudio

相关文章:

LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144353087 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 VLMEva…...

数据结构(Queue队列)

前言: 在计算机科学中,数据结构是构建高效算法和程序的基础,而队列(Queue)作为一种经典的线性数据结构,具有重要的地位。与栈(Stack)不同,队列遵循“先进先出”&#xf…...

Qt 图形框架下图形拖动后位置跳动问题

在使用Qt 的图形框架QGraphicsScene,QGraphicsView实现图形显示时。遇到一个很棘手的BUG。 使用的图形是自定义的QGraphicsObject的子类。 现象是将图形添加到画布上之后,用鼠标拖动图形,图形能正常改变位置,当再次用鼠标点击图…...

【Linux篇】走进Linux — 开启开源操作系统之旅

文章目录 初识Linux一.Linux的起源与发展二.Linux的特点三.Linux的应用四.Linux的发行版本 Linux环境搭建一.Linux环境的搭建方式二.购买云服务器三.使用XShell远程登陆到Linux 初识Linux 一.Linux的起源与发展 1.初始动机: Linux是一个功能强大的开源操作系统&am…...

如何利用DBeaver配置连接MongoDB和人大金仓数据库

最近根据国产化要求,需要使用国产数据库,但习惯使用DBeaver连接各种成熟的商业或开源数据库。因此,就想着如何继续基于该工具,连接MongoDB和人大金仓数据库,查了半天很多地方说法不统一,所以自己就简单整理…...

Android 车载虚拟化底层技术-Kernel 5.10 -Android12(multi-cards)技术实现

详细代码实现见 Android Display Graphics系列文章-汇总​​​​​​Android Display Graphics系列文章-汇总 Android Display Graphics系列文章-汇总 Android Display Graphics系列文章-汇总 本文主要包括部分: 一、Android12的Kernel 5.10版本 1.1 Kernel 5…...

Qt之点击鼠标右键创建菜单栏使用(六)

Qt开发 系列文章 - menu(六) 目录 前言 一、示例演示 二、菜单栏 1.MenuBar 2.Menu 总结 前言 QMainWindow是一个为用户提供主窗口程序的类,包含一个菜单栏(menubar)、多个工具栏(toolbars)、一个状态栏(status…...

开发一套SDK 第一弹

自动安装依赖包 添加条件使能 #ex: filetypesh bash_ls 识别 达到预期,多个硬件环境 等待文件文件系统挂在完成 或者创建 /sys/class/ 属性文件灌入配置操作 AI 提供的 netlink 调试方法,也是目前主流调用方法,socket yyds #include <linux/module.h> #include <linux…...

sftp+sshpass

实现场景&#xff0c;要求客户端定时将本地的日志文件传输到服务器。 工作环境ubuntu&#xff0c;注意不通操作系统的版本不通&#xff0c;依赖的工具的版本也有所不同 实现目标需要客户端满足安装工具&#xff1a; 1、下载安装sshpass ---安装命令&#xff1a;sudo apt-ge…...

【机器学习与数据挖掘实战】案例01:基于支持向量回归的市财政收入分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支&#xff0c;专注于让计算机系统通过数据学习和改进。它利用统计和计算方法&#xff0c;使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数…...

Idea实现定时任务

定时任务 什么是定时任务&#xff1f; 可以自动在项目中根据设定的时长定期执行对应的操作 实现方式 Spring 3.0 版本之后自带定时任务&#xff0c;提供了EnableScheduling注解和Scheduled注解来实现定时任务功能。 使用SpringBoot创建定时任务非常简单&#xff0c;目前主要…...

Linux 安装NFS共享文件夹

程序默认使用2049端口&#xff0c;如果被占用需要修改端口104设置为服务端 122设置为客户端 一、在线安装&#xff08;服务端和客户端执行&#xff09; yum install nfs-utils rpcbind -y二、配置启动参数&#xff08;服务端执行&#xff09; 104服务器/mnt路径下创建shareda…...

bash 判断内存利用率是否高于60%

在 Bash 脚本中&#xff0c;可以通过 free 命令获取内存利用率&#xff0c;然后结合 awk 和条件判断语句实现监控内存利用率是否高于 60%。以下是一个示例脚本&#xff1a; 1. 示例脚本 #!/bin/bash# 获取总内存和已使用内存 total_mem$(free | awk /Mem:/ {print $2}) used_…...

推送(push)项目到gitlab

文章目录 1、git init1.1、在当前目录中显示隐藏文件&#xff1a;1.2、查看已有的远程仓库1.3、确保你的本地机器已经生成了 SSH 密钥&#xff1a;1.4、将生成的公钥文件&#xff08;通常位于 ~/.ssh/id_rsa.pub&#xff09;复制到 GitLab 的 SSH 设置中&#xff1a;1.5、测试 …...

centos9升级OpenSSH

需求 Centos9系统升级OpenSSH和OpenSSL OpenSSH升级为openssh-9.8p1 OpenSSL默认为OpenSSL-3.2.2&#xff08;根据需求进行升级&#xff09; 将源码包编译为rpm包 查看OpenSSH和OpenSSL版本 ssh -V下载源码包并上传到服务器 openssh最新版本下载地址 wget https://cdn.openb…...

硬件成本5元-USB串口采集电表数据完整方案-ThingsPanel快速入门

ThingsPanel开源物联网平台支持广泛的协议&#xff0c;灵活自由&#xff0c;本文介绍ThingsPanel通过串口来采集电表数据&#xff0c;简单易行&#xff0c;成本低廉&#xff0c;适合入门者学习试验&#xff0c;也适合一些特定的应用场景做数据采集。 适用场景&#xff1a; 降低…...

在AWS EMR上用Hive、Spark、Airflow构建一个高效的ETL程序

在AWS EMR&#xff08;Elastic MapReduce&#xff09;上构建一个高效的ETL程序&#xff0c;使用Hive作为数据仓库&#xff0c;Spark作为计算引擎&#xff0c;Airflow作为调度工具时&#xff0c;有几个关键的设计与实施方面需要注意。 在AWS EMR上构建高效的ETL程序&#xff0c;…...

前端(四)css选择器、css的三大特性

css选择器、css的三大特性 文章目录 css选择器、css的三大特性一、css介绍二、css选择器2.1 基本选择器2.2 组合选择器2.3 交集并集选择器2.4序列选择器2.5属性选择器2.6伪类选择器2.7伪元素选择器 三、css三大特性3.1 继承性3.2 层叠性3.3 优先级 一、css介绍 CSS全称为Casca…...

vscode 打开 setting.json

按下Ctrl Shift P&#xff08;Windows/Linux&#xff09;或Cmd Shift P&#xff08;Mac&#xff09;来打开命令面板。输入open settings&#xff0c;然后选择 Open User Settings(JSON)。打开settings.json文件 ------修改设置-----&#xff1a; 1、 html代码的行长度&am…...

关于网络安全攻防演化博弈的研究小议

1. 拉高视角&#xff0c;从宏观看网络安全攻防 伴随着信息化的发展&#xff0c;网络安全的问题就一直日益突出&#xff0c;与此同时&#xff0c;网络安全技术也成为研究热点&#xff0c;直到今日也没有停止。 从微观来看&#xff0c;网络安全技术研究指的是针对某项或某几项…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...