深度学习day4|用pytorch实现猴痘病识别
- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
🍺要求:
- 训练过程中保存效果最好的模型参数。
- 加载最佳模型参数识别本地的一张图片。
- 调整网络结构使测试集accuracy到达88%(重点)。
🍻拔高(可选):
- 调整模型参数并观察测试集的准确率变化。
- 尝试设置动态学习率。
- 测试集accuracy到达90%。
本周的代码相对于上周增加指定图片预测
与保存并加载模型
这个两个模块,在学习这个两知识点后,时间有余的同学请自由探索更佳的模型结构以提升模型是识别准确率,模型的搭建是深度学习程度的重点。
🏡 我的环境:
- 语言环境:Python3.8
- 编译器:Jupyter Lab
- 深度学习环境:Pytorch
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU。
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device
device(type='cuda')
2. 导入数据
import os,PIL,random,pathlibdata_dir = '/kaggle/input/monkey-images/monkey/'#这里路径要完整,记得最右边的/不要忘了,直接从数据集右边的类别的上一级目录复制路径即可
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[5] for path in data_paths] # 这里记得kaggle里面是/,然后后面的[]的索引里面记得取数据集的路径层级
classeNames
['Monkeypox', 'Others']
- 第一步:使用
pathlib.Path()
函数将字符串类型的文件夹路径转换为pathlib.Path
对象。 - 第二步:使用
glob()
方法获取data_dir
路径下的所有文件路径,并以列表形式存储在data_paths
中。 - 第三步:通过
split()
函数对data_paths
中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
中 - 第四步:打印
classeNames
列表,显示每个文件所属的类别名称。
total_datadir = '/kaggle/input/monkey-images/monkey/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 2142Root location: /kaggle/input/monkey-images/monkey/StandardTransform Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'Monkeypox': 0, 'Others': 1}
total_data.class_to_idx
是一个存储了数据集类别和对应索引的字典。在PyTorch的ImageFolder数据加载器中,根据数据集文件夹的组织结构,每个文件夹代表一个类别,class_to_idx字典将每个类别名称映射为一个数字索引。
具体来说,如果数据集文件夹包含两个子文件夹,比如Monkeypox和Others,class_to_idx字典将返回类似以下的映射关系:{'Monkeypox': 0, 'Others': 1}
3. 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x7823152d5b10>,<torch.utils.data.dataset.Subset at 0x78231534b970>)
train_size,test_size
(1713, 429)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
torch.utils.data.DataLoader()
参数详解
torch.utils.data.DataLoader
是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader
构造函数接受多个参数,下面是一些常用的参数及其解释:
- dataset(必需参数):这是你的数据集对象,通常是
torch.utils.data.Dataset
的子类,它包含了你的数据样本。 - batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
- shuffle(可选参数):如果设置为
True
,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为False
。 - num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
- pin_memory(可选参数):如果设置为
True
,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为False
。 - drop_last(可选参数):如果设置为
True
,则在最后一个小批次可能包含样本数小于batch_size
时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为False
。 - timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
- worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
二、构建简单的CNN网络
网络结构图(可单击放大查看):、
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.pool(x) x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) x = self.pool(x) x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model
Using cuda device
Network_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=2, bias=True) )
三、 训练模型
1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset) # 训练集的大小,一共60000张图片num_batches = len(dataloader) # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X) # 网络输出loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad() # grad属性归零loss.backward() # 反向传播optimizer.step() # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
3. 编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。
def test (dataloader, model, loss_fn):size = len(dataloader.dataset) # 测试集的大小,一共10000张图片num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss
4. 正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:57.5%, Train_loss:0.744, Test_acc:62.9%,Test_loss:0.714 Epoch: 2, Train_acc:65.9%, Train_loss:0.640, Test_acc:70.9%,Test_loss:0.591 Epoch: 3, Train_acc:72.3%, Train_loss:0.562, Test_acc:72.5%,Test_loss:0.566 Epoch: 4, Train_acc:75.4%, Train_loss:0.525, Test_acc:73.4%,Test_loss:0.540 Epoch: 5, Train_acc:77.3%, Train_loss:0.492, Test_acc:75.1%,Test_loss:0.526 Epoch: 6, Train_acc:78.7%, Train_loss:0.469, Test_acc:73.0%,Test_loss:0.547 Epoch: 7, Train_acc:80.7%, Train_loss:0.443, Test_acc:74.6%,Test_loss:0.515 Epoch: 8, Train_acc:82.4%, Train_loss:0.421, Test_acc:74.1%,Test_loss:0.508 Epoch: 9, Train_acc:83.2%, Train_loss:0.406, Test_acc:76.7%,Test_loss:0.473 Epoch:10, Train_acc:83.7%, Train_loss:0.398, Test_acc:78.3%,Test_loss:0.465 Epoch:11, Train_acc:84.8%, Train_loss:0.383, Test_acc:77.4%,Test_loss:0.472 Epoch:12, Train_acc:86.1%, Train_loss:0.364, Test_acc:79.3%,Test_loss:0.456 Epoch:13, Train_acc:87.0%, Train_loss:0.356, Test_acc:78.3%,Test_loss:0.449 Epoch:14, Train_acc:87.6%, Train_loss:0.343, Test_acc:80.9%,Test_loss:0.438 Epoch:15, Train_acc:88.7%, Train_loss:0.331, Test_acc:80.7%,Test_loss:0.461 Epoch:16, Train_acc:88.3%, Train_loss:0.319, Test_acc:79.7%,Test_loss:0.448 Epoch:17, Train_acc:89.0%, Train_loss:0.312, Test_acc:81.6%,Test_loss:0.425 Epoch:18, Train_acc:89.5%, Train_loss:0.301, Test_acc:80.9%,Test_loss:0.415 Epoch:19, Train_acc:90.0%, Train_loss:0.297, Test_acc:81.6%,Test_loss:0.430 Epoch:20, Train_acc:90.9%, Train_loss:0.286, Test_acc:80.9%,Test_loss:0.406 Done
四、 结果可视化
1. Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 指定图片进行预测
⭐torch.squeeze()详解
对数据的维度进行压缩,去掉维数为1的的维度。
函数原型:
t orch.squeeze(input, dim=None, *, out=None)
关键参数说明:
- input (Tensor):输入Tensor。
- dim (int, optional):如果给定,输入将只在这个维度上被压缩。
from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img) # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='/kaggle/input/monkey-images/monkey/Monkeypox/M01_02_04.jpg', model=model, transform=train_transforms, classes=classes)
预测结果是:Monkeypox
五、保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>
六、个人总结
学会了用模型预测图片,在准确率上还未到要求,换个GPU再跑一次。
相关文章:
深度学习day4|用pytorch实现猴痘病识别
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 🍺要求: 训练过程中保存效果最好的模型参数。 加载最佳模型参数识别本地的一张图片。 调整网络结构使测试集accuracy到达88%&#x…...
批量导出工作簿中高清图片-Excel易用宝
我同事在工作簿中做了三个图表,现在需要将工作簿中的图标导出保存为高清图片,通过右键另存为保存的图片并非高清图片,其实要把Excel工作簿中的图表或图片对象导出为高清图片也很简单。 单击Excel易用宝 Plus,导出高清图片。 在导出…...
外观模式的理解和实践
外观模式(Facade Pattern)是一种常用的软件设计模式,它提供了一个统一的接口,用来访问子系统中的一群接口。该模式定义了一个高层的接口,使得子系统更容易使用。简单来说,外观模式就是通过引入一个外观角色…...
linux离线安装部署redis
版本信息 linux版本:CentOS-7-x86_64 redis版本:redis-6.2.6 VMware:VMware-workstation-full-16.1.1 xshell: Xshell-7.0 安装 1.查看当前虚拟机ip命令:ifconfig -a 2.xhell连接虚拟机 ,在xshell页面点击文件-…...
网管平台(基础篇):路由器的介绍与管理
路由器简介 路由器(Router)是一种计算机网络设备,它的主要作用是将数据通过打包,并按照一定的路径选择算法,将网络传送至目的地。路由器能够连接两个或更多个网络,并根据信道的情况自动选择和设定路由&…...
数据结构——跳表
目录 1.什么是跳表-skiplist 2.skiplist的效率如何保证? 3.skiplist的实现 4.skiplist跟平衡搜索树和哈希表的对比 1.什么是跳表-skiplist skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的…...
活动预告 |【Part2】Microsoft Azure 在线技术公开课:基础知识
课程介绍 参加“Azure 在线技术公开课:基础知识”活动,培养有助于创造新的技术可能性的技能并探索基础云概念。参加我们举办的本次免费培训活动,扩充自身的云模型和云服务类型知识。你还可以查看以计算、网络和存储为核心的 Azure 服务。 课…...
PyCharm如何导入库( 包 )
目录 1.在主界面中导库 2.用设置->项目安装库 2.1.使用右上方按钮 2.2.使用右下方Python解释器 3.使用左下角终端导库 1.在主界面中导库 在主界面输入导库后等待一会儿,会在那一行出现一个红色灯。 图1 红色灯 我们点击红色灯,会出现 图2 错误选…...
【DevOps基础篇】SCM(Source Code Management)
目录 代码管理工具Git特点:SVN特点:Git与SVN的对比:Git 的开发工作流程(flow)的设计Git Flow主要特点:工作流程:GitHub Flow主要特点:工作流程:两种Flow的对比:推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战代码管理工具 Gi…...
DDS—RTPS一致性测试案例分析
1 往期回顾 通过《DDS数据分发服务—提升汽车领域数据传输效率》和《DDS—DCPS测试策略介绍及实际案例分析》这两篇文章的介绍,相信广大读者对Data Distribution Service(DDS)协议和Data Centric Publish Subscribe(DCPS)测试有了基本了解:DDS协议致力于…...
【深度学习入门】深度学习介绍
1.1 深度学习介绍 学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 区别 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层组成,它们通常将更简…...
数值分析—非线性方程的数值解
研究背景 形如 x − t a n x 0 x-tanx0 x−tanx0、 x l n x e − x 2 s i n x 0 xlnxe^{-x^2}sinx0 xlnxe−x2sinx0等称为非线性方程,自变量之间并非简单的线性关系,这种问题我们无法通过其结构求解,需要其他的逼近方式,本章…...
LDR6500应用:C转DP线材双向投屏开启全新体验
在当今这个科技日新月异、蓬勃发展的时代,高清视频传输以及显示技术已经深深融入到我们日常生活与工作的方方面面,其重要性不言而喻。不管是在商务场合的会议演示,还是教育领域的娱乐享受,以及充满激情的游戏竞技领域,…...
路径规划之启发式算法之十六:和声搜索算法(Harmony Search, HS)
和声搜索算法(Harmony Search, HS)是一种新兴的启发式全局搜索算法,是一种模拟音乐家即兴演奏过程的群体智能优化算法。这种算法由Zong Woo Geem等人在2001年提出,灵感来源于音乐家在寻找和声时的创造性思维过程。HS算法通过模拟音乐家演奏音乐时的选择过程来寻找问题的最优…...
Redis - 实战之 全局 ID 生成器 RedisIdWorker
概述 定义:一种分布式系统下用来生成全局唯一 ID 的工具 特点 唯一性,满足优惠券需要唯一的 ID 标识用于核销高可用,随时能够生成正确的 ID高性能,生成 ID 的速度很快递增性,生成的 ID 是逐渐变大的,有利于…...
matlab 连接远程服务器
通过matlab 控制远程服务器 查看 matlab 中 python 接口脚本 对于 matlab 2010b 兼容的 最高 Python版本是 3.10 安装 3.10 版本的Python,并安装 paramiko 库 pip install paramikomatlab 中设置 Python的环境 例如 pyversion(D:/Anaconda3/python.e…...
在服务器自主选择GPU使用
比如说,程序使用第 2 张显卡(从 0 开始计数)。它的作用是告诉系统和深度学习框架(如 PyTorch 或 TensorFlow)只可见某些 GPU。 export CUDA_VISIBLE_DEVICES1 然后再查看当前使用的显卡: echo $CUDA_VIS…...
【设计模式】享元模式(Flyweight Pattern)
享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享尽可能多的对象来有效支持大量细粒度的对象。这个模式主要用于减少内存使用和提高性能,特别是在需要创建大量相似对象的场景中。享元模式的核心思想是将对象的状态分为…...
题目 1688: 数据结构-字符串插入
第一种方式字符串 #include<iostream> #include<cstring> #include<algorithm> using namespace std; int main(){string s1,s2;int n;cin>>s1>>s2>>n;s1.insert(n-1,s2);cout<<s1<<endl;return 0; } 第二种方式字符数组 …...
28.攻防世界PHP2
进入场景 扫描目录 [04:12:32] 403 - 303B - /.ht_wsr.txt [04:12:32] 403 - 306B - /.htaccess.bak1 [04:12:32] 403 - 308B - /.htaccess.sample [04:12:…...
QML QT6 WebEngineView 、Echarts使用和数据交互
QML 中的 WebEngineView 是用于显示网页内容的组件,它基于 Qt WebEngine,支持现代网页渲染和与 JavaScript 的交互。它通常用来在 QML 应用中嵌入浏览器或加载在线资源。WebEngineView 可以展示 HTML、CSS、JavaScript 等网页内容,并提供多种属性和方法来控制其行为。 如下…...
SpringBoot 整合 Mail 轻松实现邮件自动推送
简单使用 1、pom 包配置 pom 包里面添加 spring-boot-starter-mail 包引用 <dependencies><dependency> <groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency> </de…...
MyBatis 核心知识与实践
一、MyBatis 概述 1. 框架简介 MyBatis 是一款支持自定义 SQL、存储过程以及高级映射的持久层框架。它避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集的操作,使开发人员能够更专注于 SQL 语句的编写和业务逻辑的处理。 2. 核心组件 SqlSessionFactoryB…...
机器学习期末速成
文章目录 一、机器学习分类二、逻辑回归三、决策树四、集成学习算法五、支持向量机六、聚类七、特征工程和指标 文章参考自B站机器学习期末速成课 本文仅作者个人复习使用 一、机器学习分类 聚类和分类的区别: 分类:一开始就知道有哪些类别 聚类&#…...
Linux中的线程
目录 线程的概念 进程与线程的关系 线程创建 线程终止 线程等待 线程分离 原生线程库 线程局部存储 自己实现线程封装 线程的优缺点 多线程共享与独占资源 线程互斥 互斥锁 自己实现锁的封装 加锁实现互斥的原理 死锁 线程同步 线程的概念 回顾进程相关概念 …...
AI大模型学习笔记|多目标算法梳理、举例
多目标算法学习内容推荐: 1.通俗易懂讲算法-多目标优化-NSGA-II(附代码讲解)_哔哩哔哩_bilibili 2.多目标优化 (python pyomo pareto 最优)_哔哩哔哩_bilibili 学习笔记: 通过网盘分享的文件:多目标算法学习笔记 链接: https://pan.baidu.com…...
蓝桥杯刷题——day3
蓝桥杯刷题——day3 题目一题干题目解析代码 题目二题干题目解析代码 题目一 题干 每张票据有唯一的 ID 号,全年所有票据的 ID 号是连续的,但 ID 的开始数码是随机选定的。因为工作人员疏忽,在录入 ID 号的时候发生了一处错误,造…...
企业级日志分析系统ELK之ELK概述
ELK 概述 ELK 介绍 什么是 ELK 早期IT架构中的系统和应用的日志分散在不同的主机和文件,如果应用出现问题,开发和运维人员想排 查原因,就要先找到相应的主机上的日志文件再进行查找和分析,所以非常不方便,而且还涉及…...
【开源项目】经典开源项目数字孪生体育馆—开源工程及源码
飞渡科技数字孪生体育馆管理平台,融合物联网IOT、BIM数据模型、三维GIS等技术,实现体育馆的全方位监控和实时全局掌握,同时,通过集成设备设施管理、人员管理等子系统,减少信息孤岛,让场馆“可视、可控、可管…...
C++多线程实战:掌握图像处理高级技巧
文章结尾有最新热度的文章,感兴趣的可以去看看。 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容,不涉及任何偏颇观点,用中立态度客观事实描述事情本身 导读 在当今的计算世界中,…...
世界著名设计公司/福州seo博客
#include //定义不带参数的宏#define PI 3.14/********************************************************* 定义带参数的宏,#define和Pow(a)之间有个空格,Pow和(a)之间不能存在空格* Pow(a)和 ( (a) * (a) )之间有一个空格,参数应该用括号括住ÿ…...
网站建设中中文模板下载/上海广告推广
Buzzer Beater没有一丝防备,你就这样出现?当大家还在睡梦中时,小编由于昨晚水喝的比较多,于是准备起床处理一些事情,打开推特看了一眼,什么鬼?2K莫名其妙掏出了一发银河库。新码新代码的奖励和之…...
网站排名靠前/东莞seo搜索
Input示例6 -2 11 -4 13 -5 -2 Output示例20 分析: 有两种可能,第一种为正常从[1 - n]序列中的最大子字段和;第二种为数组的total_sum - ([1-n]序列中的最短序列和) 最后结果为 max { 第一种, 第二种}。对于第二种: 循…...
合肥中小企业网站制作/链接交换平台
关注、星标公众号,直达精彩内容ID:嵌入式情报局作者:情报小哥1库函数文件操作前面两篇文章小哥通过系统调用接口为大家介绍了文件操作,那么今天小哥简单为大家介绍一下库函数如何进行文件操作。之前介绍的系统调用接口是依赖于Lin…...
怎么做网站的百度收录/知名做网站的公司
下文将对SQL字段类型长度的更改进行详细的说明 如果数据量非常大,达到几百万条记录以上,使用企业管理器来更改字段类型,很多时候会超时,更改不成功,这时可以使用Sql语句来更改,如下: 更改字段…...
做跨境的网站有哪些内容/怎么做网上销售
1)css中的百分比,就目前所知,基本上都是根据父元素的大小来计算的。 launch <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <…...