当前位置: 首页 > news >正文

Opencv查找、绘制轮廓、圆形矩形轮廓和近似轮廓

查找、绘制轮廓、圆形矩形轮廓和近似轮廓

目录

  • 查找、绘制轮廓、圆形矩形轮廓和近似轮廓
    • 1 轮廓查找和绘制
      • 1.1 轮廓查找
        • 1.1.1 函数和参数
        • 1.1.2 返回值
      • 1.2 轮廓绘制
        • 1.2.1 函数和参数
      • 1.3 步骤
      • 1.4 实际测试绘制轮廓
    • 2 绘制近似轮廓
      • 2.1 函数和参数
      • 2.2 查找特定轮廓
      • 2.3 近似轮廓测试
    • 3 绘制圆形矩形轮廓
      • 3.1 圆形函数和参数
      • 3.2 矩形函数和参数
      • 3.3 实际测试

1 轮廓查找和绘制


1.1 轮廓查找

1.1.1 函数和参数

cv2.findContours(图片,检索方式,轮廓近似方法)

  • 图片最好为二值图,即非黑即白,非0即255
  • 检索方式
    • cv2.RETR_TREE,只检测外轮廓
    • cv2.RETR_LIST,检测轮廓,不建立等级关系,所有轮廓在同一等级
    • cv2.RETR_CCOMP,检测轮廓,建立两个等级关系,一个对象的外轮廓是第一级组织结构,内部空洞轮廓为第二级组织机构,空洞中的任何对象的轮廓又是第一级组织机构
    • cv2.RETR_TREE,返回所有轮廓,建立一个完整的组织机构轮廓
  • 轮廓近似方法
    • cv2.CHAIN_APPROX_NONE,存储所有轮廓点
    • cv2.CHAIN_APPROX_SIMPLE,压缩模式,只保留该方向的终点坐标
1.1.2 返回值

_,contours,hier = cv2.findContours(con_binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

  • contours,包括查找的所有轮廓的list对象,其中每一个独立的轮廓信息以边界点坐标(x,y)存在numpy数组中
  • hierarchy,轮廓层次结构,[当前轮廓同层下一轮廓,当前轮廓同层上衣轮廓,当前轮廓子轮廓,当前轮廓父轮廓]

1.2 轮廓绘制

1.2.1 函数和参数

con_con = cv2.drawContours(img片,contours=contours,contourIdx=-1,color=(255,0,0),thickness=3)

  • img绘制轮廓的图片
  • contours=contours轮廓,
  • contourIdx=-1轮廓索引值,-1表示全部
  • color=(255,0,0)绘制线条颜色,
  • thickness=3线条大小
    返回值为根据设置绘制轮廓的图像

1.3 步骤

  • 图片
  • 灰度图
  • 二值图
  • 根据二值图查找轮廓返回轮廓
  • 根据返回轮廓在图像上绘制轮廓,返回图像

1.4 实际测试绘制轮廓

原图:在这里插入图片描述

代码展示:

import cv2
con = cv2.imread('con.png')
con_0 = cv2.imread('con.png',0)
r,con_binary = cv2.threshold(con_0,125,255,cv2.THRESH_BINARY)
_,contours,hier = cv2.findContours(con_binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
con_copy = con.copy()
con_con_1 = cv2.drawContours(con_copy,contours=contours,contourIdx=-1,color=(255,0,0),thickness=3)
con_copy = con.copy()
con_con1 = cv2.drawContours(con_copy,contours=contours,contourIdx=1,color=(255,0,0),thickness=3)
cv2.imshow('con',con )
cv2.waitKey(0)
cv2.imshow('con_binary',con_binary)
cv2.waitKey(0)
cv2.imshow('con_con1',con_con1)
cv2.waitKey(0)
cv2.imshow('con_con_1',con_con_1)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

2 绘制近似轮廓


2.1 函数和参数

  • arc_0005=0.005*cv2.arcLength(contours[1],True),计算轮廓长度
    • 0.005表示近似的程度,值越小,近似的点越多,值越大近似的点越少,线条越多少
    • contours[1]为要近似的目标轮廓,True,表示曲线是闭合
    • arc_0005为返回值,为近似后的轮廓周长数值,
  • apporx_0005 = cv2.approxPolyDP(max_area_con,arc_0005,True),返回值为逼近的轮廓,需要加[]使用
  • cv2.drawContours(con_copy,[apporx_0005],contourIdx=-1,color=(0,0,255),thickness=3)
    • con_copy,绘制轮廓的图像,
    • [apporx_0005],返回的轮廓
    • contourIdx=-1,表示索引全部
    • color=(255,0,0)绘制线条颜色
    • thickness=3线条大小

2.2 查找特定轮廓

这里找的是最大的轮廓
原图:
在这里插入图片描述

代码展示:

import cv2
con = cv2.imread('wang.png')
con_0 = cv2.imread('wang.png',0)
r,con_binary = cv2.threshold(con_0,125,255,cv2.THRESH_BINARY)
_,contours,hier = cv2.findContours(con_binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
con_area = [(i,cv2.contourArea(i)) for i in contours]
## 排序
con_area_sorted = sorted(con_area,key=lambda x:x[1],reverse=True)
max_area_con = con_area_sorted[1][0]
arc_0005 = 0.005*cv2.arcLength(max_area_con,True)
apporx_0005 = cv2.approxPolyDP(max_area_con,arc_0005,True)
con_copy = con.copy()
con_0005 = cv2.drawContours(con_copy,[apporx_0005],contourIdx=-1,color=(255,0,0),thickness=3)
cv2.imshow('con',con)
cv2.waitKey(0)
cv2.imshow('con_0005',con_0005)
cv2.waitKey(0)

运行结果:

在这里插入图片描述

2.3 近似轮廓测试

原图:
在这里插入图片描述

代码展示:

import cv2
con = cv2.imread('kl.jpg')
con_0 = cv2.imread('kl.jpg',0)
r,con_binary = cv2.threshold(con_0,125,255,cv2.THRESH_BINARY)
_,contours,hier = cv2.findContours(con_binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
arc_0005= 0.005*cv2.arcLength(contours[1],True)
arc_001 = 0.01*cv2.arcLength(contours[1],True)
arc_005 = 0.05*cv2.arcLength(contours[1],True)
apporx_0005 = cv2.approxPolyDP(contours[1],arc_0005,True)
apporx_001 = cv2.approxPolyDP(contours[1],arc_001,True)
apporx_005 = cv2.approxPolyDP(contours[1],arc_005,True)
con_copy = con.copy()
con_0005 = cv2.drawContours(con_copy,[apporx_0005],contourIdx=-1,color=(0,0,255),thickness=3)
con_copy = con.copy()
con_001 = cv2.drawContours(con_copy,[apporx_001],contourIdx=-1,color=(0,0,255),thickness=3)
con_copy = con.copy()
con_005 = cv2.drawContours(con_copy,[apporx_005],contourIdx=-1,color=(0,0,255),thickness=3)
cv2.imshow('con',con)
cv2.waitKey(0)
cv2.imshow('con_0005 ',con_0005)
cv2.waitKey(0)
# #
cv2.imshow('con_001',con_001)
cv2.waitKey(0)
cv2.imshow('con_005 ',con_005)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

3 绘制圆形矩形轮廓


3.1 圆形函数和参数

  • (x,y),m = cv2.minEnclosingCircle(contours[7])
    • x,y)坐标,m,圆形轮廓半径
    • contours[7],轮廓
  • circle = cv2.circle(con_copy,(int(x),int(y)),int(m),(255,0,0),2)
    • con_copy,绘制图像
    • (int(x),int(y)),int(m),坐标和半径,要求是整数
    • (255,0,0)颜色,2线条大小
    • circle,返回的绘制好的图像

3.2 矩形函数和参数

  • x,y,w,h = cv2.boundingRect(contours[7])
    • x,y,w,h (x,y)起始坐标,矩形轮廓宽高
  • rectangle = cv2.rectangle(con_copy,(x,y),(x+w,y+h),(255,0,0),2)
  • (x,y)起始坐标,(x+w,y+h)矩形结束坐标

3.3 实际测试

原图:
在这里插入图片描述

代码展示:

import cv2
con = cv2.imread('con.png')
con_0 = cv2.imread('con.png',0)
r,con_binary = cv2.threshold(con_0,125,255,cv2.THRESH_BINARY)
_,contours,hier = cv2.findContours(con_binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
(x,y),m = cv2.minEnclosingCircle(contours[7])
con_copy = con.copy()
circle = cv2.circle(con_copy,(int(x),int(y)),int(m),(255,0,0),2)
x,y,w,h = cv2.boundingRect(contours[7])
con_copy = con.copy()
rectangle = cv2.rectangle(con_copy,(x,y),(x+w,y+h),(255,0,0),2)
cv2.imshow('circle',circle)
cv2.waitKey(0)
cv2.imshow('rectangle',rectangle)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

相关文章:

Opencv查找、绘制轮廓、圆形矩形轮廓和近似轮廓

查找、绘制轮廓、圆形矩形轮廓和近似轮廓 目录 查找、绘制轮廓、圆形矩形轮廓和近似轮廓1 轮廓查找和绘制1.1 轮廓查找1.1.1 函数和参数1.1.2 返回值 1.2 轮廓绘制1.2.1 函数和参数 1.3 步骤1.4 实际测试绘制轮廓 2 绘制近似轮廓2.1 函数和参数2.2 查找特定轮廓2.3 近似轮廓测试…...

深入解析 Python 2 与 Python 3 的差异与演进

Python 2 和 Python 3 是 Python 编程语言的两个主要版本。Python 3 于 2008 年发布,旨在解决 Python 2 中的一些设计缺陷,并引入了许多新特性。虽然 Python 2 在很长一段时间内仍然被广泛使用,但自 2020 年 1 月 1 日起,Python 2…...

后端:Spring(IOC、AOP)

文章目录 1. Spring2. IOC 控制反转2-1. 通过配置文件定义Bean2-1-1. 通过set方法来注入Bean2-1-2. 通过构造方法来注入Bean2-1-3. 自动装配2-1-4. 集合注入2-1-5. 数据源对象管理(第三方Bean)2-1-6. 在xml配置文件中加载properties文件的数据(context命名空间)2-1-7. 加载容器…...

排序:插入、选择、交换、归并排序

排序 :所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性 :假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,…...

认识+安装ElasticSearch

1. 为什么要学习ElasticSearch? 一般的来说,项目中的搜索功能尤其是电商项目,商品的搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。 1.1 数据库搜索所存在的问题 1.1.1 查询效率较低 由于数据库模糊查询不走索引&…...

一个模块实现期货分钟 K 线计算、主连行情合成

由于不同期货品种的交易时间存在差异,且不同期货合约的活跃度各不相同,因此基于期货快照行情数据合成分钟K线的计算方法在时间对齐上需要进行不同的处理。 本教程旨在提升 DolphinDB 在具体业务场景中的应用效率,并降低其在实际业务中的开发…...

PyTorch:.max(1)和.max(0)的使用

目录 1).max(1)的使用: 2).max(0)的使用: 1).max(1)的使用: 假设有一个形状为 ( m , n ) 的 Tensor x ,其中m表示行数,n表示列数。 x.max(1) ,相当于x.max(dim1) 。作…...

ASP.NET Core 中使用 Cookie 身份验证

在 ASP.NET Core 中使用 Cookie 身份验证,通常是为了实现用户的登录和授权。以下是配置 Cookie 身份验证的步骤。 1. 安装必要的 NuGet 包 首先,确保项目中包含 Microsoft.AspNetCore.Authentication.Cookies 包。你可以通过 NuGet 包管理器或命令行安…...

Ollama私有化部署大语言模型LLM

目录 一、Ollama介绍 二、安装Ollama 1、标准安装 2、国内加速 三、升级Ollama版本 四、使用Ollama 1、启动ollama服务 systemctl start ollama.service ollama serve 2、使用ollama命令 ollama run 运行模型 ollama ps 查看正在运行的模型 ollama list 查看(本地)…...

安卓app抓包总结(精)

前言 这里简单记录一下相关抓包工具证书的安装 burp证书安装 安装证书到移动设备(安卓7以后必须上传到设备系统根证书上) 导出证书 openssl x509 -inform DER -in cacert.der -out cacert.pem 转换格式 openssl x509 -inform PEM -subject_hash_old -in cacert.pem …...

Three.js 性能优化:打造流畅高效的3D应用

文章目录 前言一、减少几何体复杂度(Reduce Geometry Complexity)二、合并几何体(Merge Geometries)三、使用缓冲区几何体(Use BufferGeometries)四、纹理压缩与管理(Texture Compression and M…...

PHP 在 2025 年的现状与展望

PHP 在 2025 年依然强劲,继续为超过 77% 使用已知服务器端编程语言的网站提供动力。这并非仅仅依靠遗留代码,像 WordPress、Shopify 和 Laravel 这样的主流平台持续推动 PHP 的发展,使其保持着 актуальность 并不断进化。 为什么…...

力扣经典二分题:4. 寻找两个正序数组的中位数

题目链接:4. 寻找两个正序数组的中位数 - 力扣(LeetCode) 一、题目分析 这道题目是让我们在 两个正序的数组中寻找中位数已知两个数组的大小分别是:int m nums1.size(),n nums2.size();中位数性质1:中位数左侧元素 …...

解决WordPress出现Fatal error: Uncaught TypeError: ftp_nlist()致命问题

错误背景 WordPress版本:wordpress-6.6.2-zh_CN WooCommerce版本:woocommerce.9.5.1 WordPress在安装了WooCommerce插件后,安装的过程中没有问题,在安装完成后提示: 此站点遇到了致命错误,请查看您站点管理…...

Excel 技巧07 - 如何计算到两个日期之间的工作日数?(★)如何排除节假日计算两个日期之间的工作日数?

本文讲了如何在Excel中计算两个日期之间的工作日数,以及如何排除节假日计算两个日期之间的工作日数。 1,如何计算到两个日期之间的工作日数? 其实就是利用 NETWORKDAYS.INTL 函数 - weekend: 1 - 星期六,星期日 2,如…...

快速实现一个快递物流管理系统:实时更新与状态追踪

物流管理是电商、仓储和配送等行业的重要组成部分。随着电子商务的快速发展,快递物流的高效管理和实时状态更新变得尤为关键。本文将演示如何使用Node.js、Express、MongoDB等技术快速构建一个简单的快递物流管理系统,该系统支持快递订单的实时更新和追踪…...

kvm 解决 安装windows 虚拟机cpu 核数问题

通过lscpu命令查到我本机的cpu信息如下 CPU(s): 12 —— 系统的总逻辑处理单元数量(包括所有核心和逻辑处理器)。Thread(s) per core: 2 —— 每个物理核心支持 2 个线程(表示启用了超线程技术)。Core(s) per socket: 6 —— 每个…...

Ansys Fluent Aeroacoustics 应用

探索 Ansys Fluent 在气动声学领域的前沿功能,彻底改变各行各业解决降噪和提高音质的方式。 了解气动声学 气动声学是声学的一个分支,它处理湍流流体运动产生的噪声以及这些声音通过流体介质(如空气)的传播。这个领域在工程中至…...

119.使用AI Agent解决问题:Jenkins build Pipeline时,提示npm ERR! errno FETCH_ERROR

目录 1.Jenkins Build时的错误 2.百度文心快码AI智能体帮我解决 提问1:jenkins中如何配置npm的源 提问2:jenkins pipeline 类型为pipeline script from SCM时,如何配置npm源 3.最终解决方法-Jenkinsfile的修改 4.感触 1.Jenkins Build时…...

istio-proxy内存指标

在 Istio 环境中,istio-proxy 是 Envoy 的边车代理容器。通过运行命令 curl localhost:15000/memory,或者curl localhost:15000/stats 可以查询 Envoy 的内存统计信息。以下是典型返回结果的结构和意义: 返回结果单位是bytes,需/…...

List详解 - 双向链表的操作

在C中,std::list是标准模板库(STL)中的一个容器,它实现了双向链表的数据结构。与数组或向量(std::vector)不同,std::list允许在常数时间内进行插入和删除操作,尤其是在链表的任意位置…...

多目标优化算法之一:基于分解的方法

在多目标优化算法中,“基于分解的方法”通常指的是将多目标优化问题(MOP)分解为多个单目标优化子问题,并同时优化这些子问题。这种方法的核心思想是通过引入权重向量或参考点,将多目标问题转化为多个标量优化问题,每个子问题都关注于原始问题的一个特定方面或视角。这样可…...

conntrack iptables 安全组

centos 安装yum install conntrack-tools 1. conntrack状态 NEW: 新建连接(第一次包)。 ESTABLISHED: 已建立连接,正在传输数据。 RELATED: 与已有连接相关的连接,如 FTP 数据连接。 INVALID: 无效连接,无法识别或不…...

stringRedisTemplate.execute执行lua脚本

stringRedisTemplate.execute执行lua脚本 1. 引入必要依赖 确保项目中已经引入了Spring Data Redis相关依赖&#xff0c;例如在 Maven 项目中&#xff0c;一般会有如下依赖&#xff08;版本号根据实际情况调整&#xff09;&#xff1a; <dependency><groupId>or…...

HDFS异构存储和存储策略

一、HDFS异构存储类型 1.1 冷、热、温、冻数据 通常&#xff0c;公司或者组织总是有相当多的历史数据占用昂贵的存储空间。典型的数据使用模式是新传入的数据被应用程序大量使用&#xff0c;从而该数据被标记为"热"数据。随着时间的推移&#xff0c;存储的数据每周…...

生成idea ui风格界面代码

创建一个类似 IntelliJ IDEA 的用户界面&#xff08;UI&#xff09;涉及多个组件和复杂的布局设计。为了简化这个过程&#xff0c;我们可以使用 **Java Swing** 或 **JavaFX** 来实现一个基本的 IDE 界面&#xff0c;模仿 IntelliJ IDEA 的主要布局元素&#xff0c;如菜单栏、工…...

嵌入式C语言:二维数组

目录 一、二维数组的定义 二、内存布局 2.1. 内存布局特点 2.2. 内存布局示例 2.2.1. 数组元素地址 2.2.2. 内存布局图&#xff08;简化表示&#xff09; 2.3. 初始化对内存布局的影响 三、访问二维数组元素 3.1. 常规下标访问方式 3.2. 通过指针访问 3.2.1. 指向数…...

【机器学习:四、多输入变量的回归问题】

多输入变量的回归问题 1. 多元线性回归概述 1.1 单变量线性回归与多变量线性回归的概念区分 单变量线性回归&#xff1a;用于预测一个因变量&#xff08;输出变量&#xff09;与单一自变量&#xff08;输入变量&#xff09;之间的线性关系。模型形式为&#xff1a; y θ 0 …...

JVM实战—OOM的定位和解决

1.如何对系统的OOM异常进行监控和报警 (1)最佳的解决方案 最佳的OOM监控方案就是&#xff1a;建立一套监控平台&#xff0c;比如搭建Zabbix、Open-Falcon之类的监控平台。如果有监控平台&#xff0c;就可以接入系统异常的监控和报警&#xff0c;可以设置当系统出现OOM异常&…...

iOS 本地新项目上传git仓库,并使用sourceTree管理

此文记录的场景描述&#xff1a; iOS前期开发时&#xff0c;在本地创建项目&#xff0c;直至开发一段时间&#xff0c;初期编码及框架已完善后&#xff0c;才拿到git仓库的地址。此时需要将本地代码上传到git仓库。 上传至git仓库&#xff0c;可以使用终端&#xff0c;键入命令…...

网站建设收费标准教程/搭建网站需要哪些步骤

如何卸载linux的jdk_网站服务器运行维护卸载linux的jdk的方法&#xff1a;首先使用命令“#rpm -qa|grep gcj”查看自带的jdk&#xff1b;然后通过命令“#rpm -e –nodeps java-1.4.2-gcj-compat-1.4.2.0-40jpp.115”卸载即可。linux怎么查看属于哪个组&#xff1f;linux系统中有…...

wordpress 栏目/哪家网络公司比较好

修改步骤&#xff1a; 首先通过NDK14编译出libffmpeg.so ,将include目录取出 通过AS建立基于jni的工程项目&#xff0c;将include目录放到cpp下&#xff1b;创建jniLibs/armeabi目录&#xff0c;将libffmpeg.so放到里边 3.配置CMakeLists.txt 添加如下&#xff1a; #add the f…...

ppt做视频 模板下载网站/优化网站排名费用

查看更多宝典&#xff0c;请点击《金三银四&#xff0c;你的专属面试宝典》 第七章&#xff1a;SpringMVC MVC全名是Model View Controller&#xff0c;是模型(model)&#xff0d;视图(view)&#xff0d;控制器(controller)的缩写&#xff0c;一种软件设计典范&#xff0c;用一…...

做网站的人联系电话/如何在百度上发广告

匿名内部类   就是局部内部类的简化写法。 前提&#xff1a;存在一个类或者接口。   这里的类可以是具体类也可以是抽象类。 格式&#xff1a;   new 类名或者接口名() {     重写方法;   } 匿名内部类的本质是什么呢&#xff1f;   答&#xff1a;是一个继承了该…...

网站开发李沛杰/网络推广外包想手机蛙软件

本系列博文为阅读《VTKUsersGuide》过程中的简要总结&#xff0c;转载请注明出处。 1.VTK学习方法及资源 VTK源码位于目录“VTK/Examples”中的例子&#xff1b;与本书配套的《VTKTextBook》&#xff1b;Kitware季刊《Source》&#xff1b;VTK官网&#xff08;http://www.vtk.…...

网站功能方案/网络营销策划书的范文

[闽南网]360系统急救箱修复失败的原因是什么?如果您不太了解&#xff0c;跟着小编一起来了解一下吧!电脑自动从启应该考虑的问题如下&#xff1a;一、软件方面1.病毒 “冲击波”病毒发作时还会提示系统将在60秒后自动启动。 木马程序从远程控制你计算机的一切活动&#xff0c;…...