交错定理和切比雪夫节点的联系与区别
1. 交错定理
交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下:
设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( x ) P_n(x) Pn(x)是 f ( x ) f(x) f(x)的最佳一致逼近多项式(次数不超过 n n n)。那么,误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)−Pn(x)在区间[a,b]上满足:
(1)交错性:误差函数 E ( x ) E(x) E(x)在区间[a,b]上至少有 n + 2 n+2 n+2个交错点,即存在 n + 2 n+2 n+2个点 x 0 , x 1 , . . . , x n + 1 x_0,x_1,...,x_{n+1} x0,x1,...,xn+1使得
E ( x i ) = ( − 1 ) i ∣ ∣ E ∣ ∣ ∞ 或 E ( x i ) = ( − 1 ) i + 1 ∣ ∣ E ∣ ∣ ∞ E(x_i)=(-1)^{i}||E||_\infty 或 E(x_i)=(-1)^{i+1}||E||_\infty E(xi)=(−1)i∣∣E∣∣∞或E(xi)=(−1)i+1∣∣E∣∣∞
其中, ∣ ∣ E ∣ ∣ ∞ = m a x x ∈ [ a , b ] ∣ E ( x ) ∣ ||E||_\infty = max_{x\in [a,b]}|E(x)| ∣∣E∣∣∞=maxx∈[a,b]∣E(x)∣是误差的最大值。
(2)极值性:在这些交错点上,误差函数 E ( x ) E(x) E(x)达到其最大值或最小值,且符号交替变化。
2. 切比雪夫节点
切比雪夫节点是用于多项式插值的一种特殊节点选择,能够最小化插值误差的最大值,即最小化 ∣ ∣ f ( x ) − P n ( x ) ∣ ∣ ∞ ||f(x)-P_n(x)||_\infty ∣∣f(x)−Pn(x)∣∣∞。在区间[-1,1]上, n + 1 n+1 n+1个切比雪夫节点定义为
x k = c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=cos(2(n+1)(2k+1)π),k=0,1,...,n
对于一般区间[a,b],可以通过线性变换将切比雪夫节点映射到该区间:
x k = a + b 2 + b − a 2 c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=\frac{a+b}{2}+\frac{b-a}{2}cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=2a+b+2b−acos(2(n+1)(2k+1)π),k=0,1,...,n
从切比雪夫节点的表达式可以看出,它在[-1,1]上分布不均匀,靠近区间端点的节点更密集,所以使用切比雪夫节点进行插值时,可以显著减少高次插值的震荡现象(龙格现象)。
3. 交错定理和切比雪夫节点对比
(1) 定义不同
- 交错定理中的点是误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)−Pn(x)的极值点;
- 切比雪夫节点是切比雪夫多项式 T n + 1 ( x ) T_{n+1}(x) Tn+1(x)的极值点。
(2) 依赖对象不同
- 交错定理中的点依赖于被逼近函数 f ( x ) f(x) f(x)和逼近多项式 P n ( x ) P_n(x) Pn(x);
- 切比雪夫节点是固定的,仅依赖于区间[a,b]和节点数量 n + 1 n+1 n+1。
(3) 应用场景不同
- 交错定理用于描述最佳一致逼近多项式的特性;
- 切比雪夫节点用于多项式插值,以最小化插值误差的最大值;
(4) 联系
- 当使用切比雪夫节点进行插值时,插值误差的分布接近交错定理所描述的最佳误差分布;
- 切比雪夫节点可以看做交错定理中最佳逼近的一种实现方式。
4. 有切比雪夫节点还需要交错定理的原因
切比雪夫节点和交错定理虽然在某些方面存在一定联系,但是也有一些明显的差别,在以下场景中仍然需要交错定理:
- 如果目标是找到一个多项式,使得其与目标函数的最大偏差最小(即最佳一致逼近),则需要使用交错定理;
- 切比雪夫节点依赖于在节点处精确匹配函数值,但是在某些问题中,我们可能无法或不需要再特定节点处精确匹配函数值,例如在函数逼近中,我们可能只关心整体误差的最小化,而不关心特定点的匹配。
- 切比雪夫节点虽然能够减小高次插值的震荡现象,但是在高次逼近中,仍然可能存在数值不稳定性,交错定理通过控制误差的分布,可以进一步提高逼近的稳定性和精度;
- 交错定理为逼近问题提供了理论依据,可以用于分析和验证逼近结果的有效性,例如,通过检查误差函数是否满足交错性,可以判断一个多项式是否是最佳一致逼近多项式;
相关文章:
交错定理和切比雪夫节点的联系与区别
1. 交错定理 交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下: 设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( …...
大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )
大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 ) 文章目录 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据…...
GitHub Actions定时任务配置完全指南:从Cron语法到实战示例
你好,我是悦创。 博客网站:https://blog.bornforthis.cn/ 本教程将详细讲解如何在GitHub Actions中配置定时任务(Scheduled Tasks),帮助你掌握 Cron 表达式的编写规则和实际应用场景。 一、定时任务基础配置 1.1 核…...
Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 Van-Nav是一个基于Vue.js开发的导航组件库,它提供了多种预设的样式和灵活的配置选项,使得开发者可以轻松地定制出符合项目需求…...
Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)
激光微距仪可以测量短距离内的产品尺寸,产品规格书的测量 精度可以到0.001mm。具体需要看不同的型号。 1、激光微距仪 2、尺寸测量应用 下面我们以测量高度为例子,设计一个高度测量功能块,同时给出测量数据和合格不合格指标。 3、高度测量功能块 4、复位完成信号 5、功能…...
Manacher 最长回文子串
方法:求字符串的 #include<bits/stdc.h> using namespace std; using lllong long; const int N1e69; char s[N]; int p[N];int main() {cin>>s1;int nstrlen(s1);s[0]^;s[2*n2]$; for(int i2*n1;i>1;i--){s[i](i&1)?#:s[i>>1];//右移表示…...
51单片机开发:独立键盘实验
实验目的:按下键盘1时,点亮LED灯1。 键盘原理图如下图所示,可见,由于接GND,当键盘按下时,P3相应的端口为低电平。 键盘按下时会出现抖动,时间通常为5-10ms,代码中通过延时函数delay…...
组件框架漏洞
一.基础概念 1.组件 定义:组件是软件开发中具有特定功能或特性的可重用部件或模块,能独立使用或集成到更大系统。 类型 前端 UI 组件:像按钮、下拉菜单、导航栏等,负责构建用户界面,提升用户交互体验。例如在电商 AP…...
OFDM系统仿真
1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...
基于单片机的盲人智能水杯系统(论文+源码)
1 总体方案设计 本次基于单片机的盲人智能水杯设计,采用的是DS18B20实现杯中水温的检测,采用HX711及应力片实现杯中水里的检测,采用DS1302实现时钟计时功能,采用TTS语音模块实现语音播报的功能,并结合STC89C52单片机作…...
安心即美的生活方式
如果你的心是安定的,那么,外界也就安静了。就像陶渊明说的:心远地自偏。不是走到偏远无人的边荒才能得到片刻清净,不需要使用洪荒之力去挣脱生活的枷锁,这是陶渊明式的中国知识分子的雅量。如果你自己是好的男人或女人…...
安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可查看源码) 1.掌握Activity生命周的每个方法。 2.掌握Activity的创建、配置、启动和关闭。 3.掌握Intent和IntentFilter的使用。 4.掌握Activity之间的跳转方式、任务栈和四种启动模式。 5.掌握在Activity中添加…...
【cocos creator】【模拟经营】餐厅经营demo
下载:【cocos creator】模拟经营餐厅经营...
前端 | 深入理解Promise
1. 引言 JavaScript 是一种单线程语言,这意味着它一次仅能执行一个任务。为了处理异步操作,JavaScript 提供了回调函数,但是随着项目处理并发任务的增加,回调地狱 (Callback Hell) 使异步代码很难维护。为此,ES6带来了…...
Visual Studio Code修改terminal字体
个人博客地址:Visual Studio Code修改terminal字体 | 一张假钞的真实世界 默认打开中断后字体显示如下: 打开设置,搜索配置项terminal.integrated.fontFamily,修改配置为monospace。修改后效果如下:...
自然语言处理-词嵌入 (Word Embeddings)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 词嵌入(Word Embedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有…...
自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...
【论文笔记】Fast3R:前向并行muti-view重建方法
众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…...
谈谈你所了解的AR技术吧!
深入探讨 AR 技术的原理与应用 在科技飞速发展的今天,AR(增强现实)技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动?在这篇文章中,我们将深入探讨AR技术的原…...
upload labs靶场
upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关,所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称:张嘉玮 二.解题情况 三.解题过程 题目:up load labs靶场 pass 1前后端 思路及解题:…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
