当前位置: 首页 > news >正文

OpenCV 版本不兼容导致的问题

问题和解决方案

今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取

"""
cap = cv2.VideoCapture(RTSP_URL)
print("链接视频流完成")
while True:ret, frame = cap.read()
"""def render_result_in_frame(frame, recognize_result: RecognizeResult):# 将 OpenCV 图像转换为 PIL 图像frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))draw = ImageDraw.Draw(frame_pil)for item in recognize_result:# 绘制矩形框draw.rectangle([(item.x1, item.y1), (item.x2, item.y2)],outline=(0, 255, 0),width=2)# 绘制中文文本text = f"姓名: {item.name}"draw.text((item.x1, item.y1 - 40),text,font=FONT,fill=(0, 255, 0, 0))  # fill 参数是颜色 (R, G, B, A)# 将 PIL 图像转换回 OpenCV 格式frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)return frame

错误信息如下

...(略)person_image_rgb = cv2.cvtColor(person_image, cv2.COLOR_BGR2RGB)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'cvtColor'
> Overload resolution failed:
>  - src is not a numpy array, neither a scalar
>  - Expected Ptr<cv::UMat> for argument 'src'

查了很久也没有查到原因,因为这个函数输入是一个 opencv 读取的视频帧,忽然想到,在安装依赖的时候,我先安装了一次 opencv-python 的 4.11.0.86 版本,又安装了一次 opencv-python-headless 的 4.7.0 版本,这正好和错误信息中的 4.7.0 对应。

随后升级了 opencv-python-headless 的版本,问题就被解决了

原因分析

那么首先要搞懂的就是,opencv-python 和 opencv-python-headless 的关系是什么呢?

查阅了如下资料(【完整版】opencv-python-headless、opencv-python和opencv-contrib-python区别和联系),发现还有一个 opencv-contrib-python 的版本,三者的比较大体如下

  • opencv-python-headless:具备OpenCV核心图像与视频处理功能,像图像滤波、视频帧提取等,但无GUI功能,适合服务器端或无需显示图像的后台数据处理任务
  • opencv-python:拥有OpenCV完整核心功能,除处理图像视频外还支持GUI,能创建窗口显示图像、实现交互,适用于本地交互式开发与调试
  • opencv-contrib-python:涵盖核心功能及扩展模块,提供深度学习、高级特征提取等额外算法,适用于科研及需高级功能的开发场景

这三者有一个很坑的地方就是他们都会安装到 cv2 大路径下,并且相互有重叠的文件

那么当先安装 opencv-python 后,再安装另一个版本的 opencv-python-headless,就有可能发生 py 文件的覆盖,进而导致接口不兼容的问题

尽量安装单一版本;如果非要安装多个版本,要保证版本一致

以上只是个人的一些分析,如果有分析不正确的地方,欢迎在评论区留言

相关文章:

OpenCV 版本不兼容导致的问题

问题和解决方案 今天运行如下代码&#xff0c;发生了意外的错误&#xff0c;代码如下&#xff0c;其中输入的 frame 来自于 OpenCV 开启数据流的读取 """ cap cv2.VideoCapture(RTSP_URL) print("链接视频流完成") while True:ret, frame cap.rea…...

低成本、高附加值,具有较强的可扩展性和流通便利性的行业

目录 虚拟资源类 1. 网课教程 2. 设计素材 3. 软件工具 服务类 1. 写作服务 2. 咨询顾问 3. 在线教育 4. 社交媒体管理 虚拟资源类 1. 网课教程 特点&#xff1a;高附加值&#xff0c;可复制性强&#xff0c;市场需求大。 执行流程&#xff1a; 选择领域&#xff1a…...

DirectShow过滤器开发-读视频文件过滤器(再写)

下载本过滤器DLL 本过滤器读取视频文件输出视频流和音频流。流类型由文件决定。已知可读取的文件格式有&#xff1a;AVI&#xff0c;ASF&#xff0c;MOV&#xff0c;MP4&#xff0c;MPG&#xff0c;WMV。 过滤器信息 过滤器名称&#xff1a;读视频文件 过滤器GUID&#xff1a…...

代码练习2.3

终端输入10个学生成绩&#xff0c;使用冒泡排序对学生成绩从低到高排序 #include <stdio.h>void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {// 交换 arr[j] 和 arr[j1]int temp arr[…...

基于 Redis GEO 实现条件分页查询用户附近的场馆列表

&#x1f3af; 本文档详细介绍了如何使用Redis GEO模块实现场馆位置的存储与查询&#xff0c;以支持“附近场馆”搜索功能。首先&#xff0c;通过微信小程序获取用户当前位置&#xff0c;并将该位置信息与场馆的经纬度数据一同存储至Redis中。利用Redis GEO高效的地理空间索引能…...

【大数据技术】案例01:词频统计样例(hadoop+mapreduce+yarn)

词频统计(hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 在阅读本文前,请确保已经阅读过以上两篇文章,成功搭建了Hadoop+MapReduce+Yarn的大数据集群环境。 写在前面 Wo…...

Selenium 使用指南:从入门到精通

Selenium 使用指南&#xff1a;从入门到精通 Selenium 是一个用于自动化 Web 浏览器操作的强大工具&#xff0c;广泛应用于自动化测试和 Web 数据爬取中。本文将带你从入门到精通地掌握 Selenium&#xff0c;涵盖其基本操作、常用用法以及一个完整的图片爬取示例。 1. 环境配…...

笔试-排列组合

应用 一个长度为[1, 50]、元素都是字符串的非空数组&#xff0c;每个字符串的长度为[1, 30]&#xff0c;代表非负整数&#xff0c;元素可以以“0”开头。例如&#xff1a;[“13”, “045”&#xff0c;“09”&#xff0c;“56”]。 将所有字符串排列组合&#xff0c;拼起来组成…...

Java序列化详解

1 什么是序列化、反序列化 在Java编程实践中&#xff0c;当我们需要持久化Java对象&#xff0c;比如把Java对象保存到文件里&#xff0c;或是在网络中传输Java对象时&#xff0c;序列化机制就发挥着关键作用。 序列化&#xff1a;指的是把数据结构或对象转变为可存储、可传输的…...

ChatGPT与GPT的区别与联系

ChatGPT 和 GPT 都是基于 Transformer 架构的语言模型&#xff0c;但它们有不同的侧重点和应用。下面我们来探讨一下它们的区别与联系。 1. GPT&#xff08;Generative Pre-trained Transformer&#xff09; GPT 是一类由 OpenAI 开发的语言模型&#xff0c;基于 Transformer…...

MySQL入门 – CRUD基本操作

MySQL入门 – CRUD基本操作 Essential CRUD Manipulation to MySQL Database By JacksonML 本文简要介绍操作MySQL数据库的基本操作&#xff0c;即创建(Create), 读取&#xff08;Read&#xff09;, 更新(Update)和删除&#xff08;Delete&#xff09;。 基于数据表的关系型…...

Redis背景介绍

⭐️前言⭐️ 本文主要做Redis相关背景介绍&#xff0c;包括核心能力、重要特性和使用场景。 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f349;博主将持续更新学习记录收获&#xff0c;友友们有任何问题可以在评论区留言 &#x1f349;博客中涉及源码及博主…...

PPT演示设置:插入音频同步切换播放时长计算

PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频&#xff1a;点击菜单栏插入-音频-选择PC上的音频&#xff08;已存在的音频&#xff09;或者录制音频&#xff08;现场录制…...

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析...

[权限提升] Wdinwos 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的&#xff0c;所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…...

【算法】回溯算法专题② ——组合型回溯 + 剪枝 python

目录 前置知识进入正题小试牛刀实战演练总结 前置知识 【算法】回溯算法专题① ——子集型回溯 python 进入正题 组合https://leetcode.cn/problems/combinations/submissions/596357179/ 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以…...

LeetCode:121.买卖股票的最佳时机1

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;121.买卖股票的最佳时机1 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票…...

pytorch生成对抗网络

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 生成对抗网络&#xff08;GAN&#xff0c;Generative Adversarial Network&#xff09;是一种深度学习模型&#xff0c;由两个神经网络组成&#xff1a;生成器&#xff08;Generator&#xff09;和判别器&#xff0…...

Visual Studio Code应用本地部署的deepseek

1.打开Visual Studio Code&#xff0c;在插件中搜索continue&#xff0c;安装插件。 2.添加新的大语言模型&#xff0c;我们选择ollama. 3.直接点connect&#xff0c;会链接本地下载好的deepseek模型。 参看上篇文章&#xff1a;deepseek本地部署-CSDN博客 4.输入需求生成可用…...

用 HTML、CSS 和 JavaScript 实现抽奖转盘效果

顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域&#xff0c;周围八个格子分别放置了不同的奖品名称&#xff0c;中间是一个 “开始抽奖” 的按钮。点击按钮后&#xff0c;抽奖区域的格子会快速滚动&#xff0c;颜色不断变化&#xf…...

Skewer v0.2.2安装与使用-生信工具43

01 Skewer 介绍 Skewer&#xff08;来自于 SourceForge&#xff09;实现了一种基于位掩码的 k-差异匹配算法&#xff0c;专门用于接头修剪&#xff0c;特别设计用于处理下一代测序&#xff08;NGS&#xff09;双端序列。 fastp安装及使用-fastp v0.23.4&#xff08;bioinfoma…...

C语言:链表排序与插入的实现

好的!以下是一篇关于这段代码的博客文章: 从零开始:链表排序与插入的实现 在数据结构的学习中,链表是一种非常基础且重要的数据结构。今天,我们将通过一个简单的 C 语言程序,来探讨如何实现一个从小到大排序的链表,并在其中插入一个新的节点。这个过程不仅涉及链表的基…...

【Elasticsearch】doc_values 可以用于查询操作

确实&#xff0c;doc values 可以用于查询操作&#xff0c;尽管它们的主要用途是支持排序、聚合和脚本中的字段访问。在某些情况下&#xff0c;Elasticsearch 也会利用 doc values 来执行特定类型的查询。以下是关于 doc values 在查询操作中的使用及其影响的详细解释&#xff…...

深度学习深度解析:从基础到前沿

引言 深度学习作为人工智能的一个重要分支&#xff0c;通过模拟人脑的神经网络结构来进行数据分析和模式识别。它在图像识别、自然语言处理、语音识别等领域取得了显著成果。本文将深入探讨深度学习的基础知识、主要模型架构以及当前的研究热点和发展趋势。 基础概念与数学原理…...

JVM的GC详解

获取GC日志方式大抵有两种 第一种就是设定JVM参数在程序启动时查看&#xff0c;具体的命令参数为: -XX:PrintGCDetails # 打印GC日志 -XX:PrintGCTimeStamps # 打印每一次触发GC时发生的时间第二种则是在服务器上监控:使用jstat查看,如下所示&#xff0c;命令格式为jstat -gc…...

【开源免费】基于Vue和SpringBoot的校园网上店铺系统(附论文)

本文项目编号 T 187 &#xff0c;文末自助获取源码 \color{red}{T187&#xff0c;文末自助获取源码} T187&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

测压表压力表计量表针头针尾检测数据集VOC+YOLO格式4862张4类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;4862 标注数量(xml文件个数)&#xff1a;4862 标注数量(txt文件个数)&#xff1a;4862 …...

Vue 3 30天精进之旅:Day 12 - 异步操作

在现代前端开发中&#xff0c;异步操作是一个非常常见的需求&#xff0c;例如从后端API获取数据、进行文件上传等任务。Vue 3 结合组合式API和Vuex可以方便地处理这些异步操作。今天我们将重点学习如何在Vue应用中进行异步操作&#xff0c;包括以下几个主题&#xff1a; 异步操…...

【网络】3.HTTP(讲解HTTP协议和写HTTP服务)

目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp&#xff08;&#xff09; 总结 1 认识URL 什么是URI&#xff1f; URI 是 Uniform Resource Identifier的缩写&…...

[paddle] 矩阵相关的指标

行列式 det 行列式定义参考 d e t ( A ) ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) \sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)i1​,i2​,⋯,in​…...