当前位置: 首页 > news >正文

Linux - 进程间通信(3)

目录

3、解决遗留BUG -- 边关闭信道边回收进程

1)解决方案

2)两种方法相比较

4、命名管道

1)理解命名管道

2)创建命名管道

a. 命令行指令

b. 系统调用方法

3)代码实现命名管道

构建类进行封装命名管道:

构造和析构:

读取管道、写入管道:

server.cc (读端):

client.cc(写端):

效果:

4)疑点解决

写端未来,读端open调用阻塞

读端关闭,写端继续写入

5)完整代码

namedPipe.hpp:

server.cc:

client.cc:


3、解决遗留BUG -- 边关闭信道边回收进程

1)解决方案

我们仍然想用上述方法进行管道和子进程的回收

-- 则需要解决子进程所继承的父进程遗留的多余wfd,我们在每次创建子进程时,遍历所有之前的信道,关闭掉wfd即可,就不会出现,多个wfd指向一个管道

2)两种方法相比较

退一个回收一个:

先全部退出,再进行等待回收:

4、命名管道

1)理解命名管道

命名:该管道有名字,因为该文件有路径,有路径必有文件名

管道:依旧是一个内存级的基于文件进行通信的通信方案

属性、操作、文件内核缓冲区同一个文件的都是差不多的,因此不用再创建一份,操作系统不做浪费时间和空间的事情

我们怎么保证两个毫不相关的进程打开了同一个文件呢??
每一个文件,都有文件路径(唯一性)

2)创建命名管道

a. 命令行指令

一个进程(echo)向命名管道里面输入数据

一个进程(cat)向命名管道里面读取数据

这样就实现了两个毫不相关的进行之间的通信

创建了三个窗口,一个一直向管道输入,一个一直读取,一个手动检测管道大小

但是我们可以看到管道文件(myfifo)的大小一直显示0

因为 FIFO0 文件虽存在于文件系统中,但其内容都存放在内存里,不会将通信数据刷新到磁盘中,所以在磁盘上显示的文件大小始终为0

b. 系统调用方法

使用mkfifo即可创建管道文件

使用unlink即可删除一个管道文件(当然,rm也可以删除)

3)代码实现命名管道

创建两个.cc文件分别模拟两个进程,一个进行发送,一个进行读取

通过一个CreateNamedPipe和一个RemoveNamedPipe就可以实现对管道生命周期的管理

当然,我们管理管道的声明周期时,肯定是将创建和删除交给同一个文件去做比较好,因为它清楚什么时候去删除合适

这里我们让发送的那方去管理管道的生命周期

构建类进行封装命名管道:

我们需要创建管道的路径(共同路径)、创建管道的身份、管道的文件描述符

class NamedPipe
{
private:const std::string _fifo_path;int _id;int _fd;
};
构造和析构:
class NamedPipe
{
public:NamedPipe(const std::string &path, int who): _fifo_path(path), _id(who), _fd(DefaultFd){if (_id == Creater){int res = mkfifo(_fifo_path.c_str(), 0666);if (res != 0){perror("mkfifo");}std::cout << "creater create named pipe" << std::endl;}}~NamedPipe(){sleep(5);if (_id == Creater){int res = unlink(_fifo_path.c_str());if (res != 0){perror("unlink");}std::cout << "creater remove named pipe" << std::endl;}if(_fd != DefaultFd) close(_fd);}private:const std::string _fifo_path;int _id;int _fd;
};
读取管道、写入管道:
class NamedPipe
{
private:bool OpenNamedPipe(int mode){_fd = open(_fifo_path.c_str(), mode);if(_fd < 0) return false;return true;}public:NamedPipe(const std::string &path, int who): _fifo_path(path), _id(who), _fd(DefaultFd){if (_id == Creater){int res = mkfifo(_fifo_path.c_str(), 0666);if (res != 0){perror("mkfifo");}std::cout << "creater create named pipe" << std::endl;}}bool OpenForRead(){return OpenNamedPipe(Read);}bool OpenForWrite(){return OpenNamedPipe(Write);}int ReadNamedPipe(std::string *out){char buffer[BaseSize];int n = read(_fd, buffer, sizeof(buffer));if(n > 0){buffer[n] = 0; // '\0'*out = buffer;}return n;}int WriteNamedPipe(const std::string &in){return write(_fd, in.c_str(), in.size());}~NamedPipe(){sleep(5);if (_id == Creater){int res = unlink(_fifo_path.c_str());if (res != 0){perror("unlink");}std::cout << "creater remove named pipe" << std::endl;}if(_fd != DefaultFd) close(_fd);}private:const std::string _fifo_path;int _id;int _fd;
};
server.cc (读端):
#include "namedPipe.hpp"// server -- read : 管理命名管道的整个生命周期
int main()
{NamedPipe fifo(comm_path, Creater);// 对于读端而言,如果我们打开了文件,但是写还没有来,我们会阻塞在open调中,直到对方打开// --> 一种变向的进程同步if (fifo.OpenForRead()){std::cout << "Server open named pipe done" << std::endl; // 为了检测阻塞sleep(3);while (true){std::string message;int n = fifo.ReadNamedPipe(&message);if (n > 0) // 正常接收{std::cout << "Client Say > " << message << std::endl;}else if(n == 0) // 即写端关闭{std::cout << "Client quit, Server too!" << std::endl;break;}else {std::cout << "fifo.ReadNamedPipe Error!" << std::endl;break;}}}return 0;
}
client.cc(写端):
#include "namedPipe.hpp"// client -- write
int main()
{NamedPipe fifo(comm_path, User); // 以非创建身份实例化if(fifo.OpenForWrite()){std::cout << "client open named pipe done" << std::endl;while(true){std::cout << "Please Enter > ";std::string message;std::getline(std::cin, message);fifo.WriteNamedPipe(message);}}return 0;
}
效果:

实现了两个进程(无父子关系)之间的通信

4)疑点解决

写端未来,读端open调用阻塞

读端关闭,写端继续写入

5)完整代码

namedPipe.hpp:
#pragma once#include <iostream>
#include <string>
#include <cstdio>
#include <cerrno>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>const std::string comm_path = "./myfifo";#define DefaultFd -1
#define Creater 1
#define User 2
#define Read O_RDONLY
#define Write O_WRONLY
#define BaseSize 4096class NamedPipe
{
private:bool OpenNamedPipe(int mode){_fd = open(_fifo_path.c_str(), mode);if(_fd < 0) return false;return true;}public:NamedPipe(const std::string &path, int who): _fifo_path(path), _id(who), _fd(DefaultFd){if (_id == Creater){int res = mkfifo(_fifo_path.c_str(), 0666);if (res != 0){perror("mkfifo");}std::cout << "creater create named pipe" << std::endl;}}bool OpenForRead(){return OpenNamedPipe(Read);}bool OpenForWrite(){return OpenNamedPipe(Write);}int ReadNamedPipe(std::string *out){char buffer[BaseSize];int n = read(_fd, buffer, sizeof(buffer));if(n > 0){buffer[n] = 0; // '\0'*out = buffer;}return n;}int WriteNamedPipe(const std::string &in){return write(_fd, in.c_str(), in.size());}~NamedPipe(){sleep(5);if (_id == Creater){int res = unlink(_fifo_path.c_str());if (res != 0){perror("unlink");}std::cout << "creater remove named pipe" << std::endl;}if(_fd != DefaultFd) close(_fd);}private:const std::string _fifo_path;int _id;int _fd;
};
server.cc:
#include "namedPipe.hpp"// server -- read : 管理命名管道的整个生命周期
int main()
{NamedPipe fifo(comm_path, Creater);// 对于读端而言,如果我们打开了文件,但是写还没有来,我们会阻塞在open调中,直到对方打开// --> 一种变向的进程同步if (fifo.OpenForRead()){std::cout << "Server open named pipe done" << std::endl;sleep(3);while (true){std::string message;int n = fifo.ReadNamedPipe(&message);if (n > 0){std::cout << "Client Say > " << message << std::endl;}else if(n == 0){std::cout << "Client quit, Server too!" << std::endl;break;}else{std::cout << "fifo.ReadNamedPipe Error!" << std::endl;break;}}}return 0;
}
client.cc:
#include "namedPipe.hpp"// client -- write
int main()
{NamedPipe fifo(comm_path, User);if(fifo.OpenForWrite()){std::cout << "client open named pipe done" << std::endl;while(true){std::cout << "Please Enter > ";std::string message;std::getline(std::cin, message);fifo.WriteNamedPipe(message);}}return 0;
}

相关文章:

Linux - 进程间通信(3)

目录 3、解决遗留BUG -- 边关闭信道边回收进程 1&#xff09;解决方案 2&#xff09;两种方法相比较 4、命名管道 1&#xff09;理解命名管道 2&#xff09;创建命名管道 a. 命令行指令 b. 系统调用方法 3&#xff09;代码实现命名管道 构建类进行封装命名管道&#…...

3、C#基于.net framework的应用开发实战编程 - 实现(三、三) - 编程手把手系列文章...

三、 实现&#xff1b; 三&#xff0e;三、编写应用程序&#xff1b; 此文主要是实现应用的主要编码工作。 1、 分层&#xff1b; 此例子主要分为UI、Helper、DAL等层。UI负责便签的界面显示&#xff1b;Helper主要是链接UI和数据库操作的中间层&#xff1b;DAL为对数据库的操…...

C++编程语言:抽象机制:泛型编程(Bjarne Stroustrup)

泛型编程(Generic Programming) 目录 24.1 引言(Introduction) 24.2 算法和(通用性的)提升(Algorithms and Lifting) 24.3 概念(此指模板参数的插件)(Concepts) 24.3.1 发现插件集(Discovering a Concept) 24.3.2 概念与约束(Concepts and Constraints) 24.4 具体化…...

Python面试宝典13 | Python 变量作用域,从入门到精通

今天&#xff0c;我们来深入探讨一下 Python 中一个非常重要的概念——变量作用域。理解变量作用域对于编写清晰、可维护、无 bug 的代码至关重要。 什么是变量作用域&#xff1f; 简单来说&#xff0c;变量作用域就是指一个变量在程序中可以被访问的范围。Python 中有四种作…...

基于最近邻数据进行分类

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 完整代码&#xff1a; import torch import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt# 生成一个简单的数据…...

DeepSeek V3 vs R1:大模型技术路径的“瑞士军刀“与“手术刀“进化

DeepSeek V3 vs R1&#xff1a;——大模型技术路径的"瑞士军刀"与"手术刀"进化 大模型分水岭&#xff1a;从通用智能到垂直突破 2023年&#xff0c;GPT-4 Turbo的发布标志着通用大模型进入性能瓶颈期。当模型参数量突破万亿级门槛后&#xff0c;研究者们开…...

一、TensorFlow的建模流程

1. 数据准备与预处理&#xff1a; 加载数据&#xff1a;使用内置数据集或自定义数据。 预处理&#xff1a;归一化、调整维度、数据增强。 划分数据集&#xff1a;训练集、验证集、测试集。 转换为Dataset对象&#xff1a;利用tf.data优化数据流水线。 import tensorflow a…...

指导初学者使用Anaconda运行GitHub上One - DM项目的步骤

以下是指导初学者使用Anaconda运行GitHub上One - DM项目的步骤&#xff1a; 1. 安装Anaconda 下载Anaconda&#xff1a; 让初学者访问Anaconda官网&#xff08;https://www.anaconda.com/products/distribution&#xff09;&#xff0c;根据其操作系统&#xff08;Windows、M…...

7层还是4层?网络模型又为什么要分层?

~犬&#x1f4f0;余~ “我欲贱而贵&#xff0c;愚而智&#xff0c;贫而富&#xff0c;可乎&#xff1f; 曰&#xff1a;其唯学乎” 一、为什么要分层 \quad 网络通信的复杂性促使我们需要一种分层的方法来理解和管理网络。就像建筑一样&#xff0c;我们不会把所有功能都混在一起…...

C++:抽象类习题

题目内容&#xff1a; 求正方体、球、圆柱的表面积&#xff0c;抽象出一个公共的基类Container为抽象类&#xff0c;在其中定义一个公共的数据成员radius(此数据可以作为正方形的边长、球的半径、圆柱体底面圆半径)&#xff0c;以及求表面积的纯虚函数area()。由此抽象类派生出…...

C++ 泛型编程指南02 (模板参数的类型推导)

文章目录 一 深入了解C中的函数模板类型推断什么是类型推断&#xff1f;使用Boost TypeIndex库进行类型推断分析示例代码关键点解析 2. 理解函数模板类型推断2.1 指针或引用类型2.1.1 忽略引用2.1.2 保持const属性2.1.3 处理指针类型 2.2 万能引用类型2.3 传值方式2.4 传值方式…...

音视频入门基础:RTP专题(5)——FFmpeg源码中,解析SDP的实现

一、引言 FFmpeg源码中通过ff_sdp_parse函数解析SDP。该函数定义在libavformat/rtsp.c中&#xff1a; int ff_sdp_parse(AVFormatContext *s, const char *content) {const char *p;int letter, i;char buf[SDP_MAX_SIZE], *q;SDPParseState sdp_parse_state { { 0 } }, *s1…...

计算机网络 应用层 笔记 (电子邮件系统,SMTP,POP3,MIME,IMAP,万维网,HTTP,html)

电子邮件系统&#xff1a; SMTP协议 基本概念 工作原理 连接建立&#xff1a; 命令交互 客户端发送命令&#xff1a; 服务器响应&#xff1a; 邮件传输&#xff1a; 连接关闭&#xff1a; 主要命令 邮件发送流程 SMTP的缺点: MIME&#xff1a; POP3协议 基本概念…...

【视频+图文详解】HTML基础3-html常用标签

图文教程 html常用标签 常用标签 1. 文档结构 <!DOCTYPE html>&#xff1a;声明HTML文档类型。<html>&#xff1a;定义HTML文档的根元素。<head>&#xff1a;定义文档头部&#xff0c;包含元数据。<title>&#xff1a;设置网页标题&#xff0c;浏览…...

FreeRTOS学习 --- 消息队列

队列简介 队列是任务到任务、任务到中断、中断到任务数据交流的一种机制&#xff08;消息传递&#xff09; 全局变量的弊端&#xff1a;数据无保护&#xff0c;导致数据不安全&#xff0c;当多个任务同时对该变量操作时&#xff0c;数据易受损 使用队列的情况如下&#xff1a;…...

PHP If...Else 语句详解

PHP If...Else 语句详解 引言 在PHP编程中&#xff0c;if...else语句是流程控制的重要组成部分&#xff0c;它允许程序根据条件判断执行不同的代码块。本文将详细解析PHP中的if...else语句&#xff0c;包括其基本用法、高级技巧以及注意事项。 一、基本用法 if...else语句的…...

pytorch使用SVM实现文本分类

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 完整代码&#xff1a; import torch import torch.nn as nn import torch.optim as optim import jieba import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extract…...

安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可在代码地址查看&#xff09; 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...

【Qt】常用的容器

Qt提供了多个基于模板的容器类&#xff0c;这些容器类可用于存储指定类型的数据项。例如常用的字符串列表类 QStringList 可用来操作一个 QList<QString>列表。 Qt的容器类比标准模板库(standard template library&#xff0c;STL)中的容器类更轻巧、使用更安全且更易于使…...

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...