当前位置: 首页 > news >正文

中建装饰集团/站长之家seo一点询

中建装饰集团,站长之家seo一点询,中国建设手机银行网站,企业网站建设网页设计文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点: 降低资源消耗:线程是稀缺资源,如果无限…

文章目录

    • 一. 按照任务类型对线程池进行分类
      • 1. IO密集型任务的线程数
      • 2. CPU密集型任务的线程数
      • 3. 混合型任务的线程数
    • 二. 线程数越多越好吗
    • 三. Redis 单线程的高效性

使用线程池的好处主要有以下三点:

  1. 降低资源消耗:线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,通过重复利用已创建的线程可以降低线程创建和销毁造成的消耗。
  2. 提高响应速度:当任务到达时,可以不需要等待线程创建就能立即执行。
  3. 提高线程的可管理性:线程池提供了一种限制、管理资源的策略,维护一些基本的线程统计信息,如已完成任务的数量等。通过线程池可以对线程资源进行统一的分配、监控和调优。

虽然使用线程池的好处很多,但是如果其线程数配置得不合理,不仅可能达不到预期效果,反而可能降低应用的性能。接下来按照不同的任务类型来配置线程池。

 

一. 按照任务类型对线程池进行分类

使用标准构造器ThreadPoolExecutor创建线程池时,会涉及线程数的配置,而线程数的配置与异步任务类型是分不开的。这里将线程池的异步任务大致分为以下三类:

  1. IO密集型任务此类任务主要是执行IO操作。由于执行IO操作的时间较长,导致CPU的利用率不高,这类任务CPU常处于空闲状态。Netty的IO读写操作为此类任务的典型例子。
  2. CPU密集型任务此类任务主要是执行计算任务。由于响应时间很快,CPU一直在运行,这种任务CPU的利用率很高。
  3. 混合型任务此类任务既要执行逻辑计算,又要进行IO操作(如RPC调用、数据库访问)​。

相对来说,由于执行IO操作的耗时较长(一次网络往返往往在数百毫秒级别)​,这类任务的CPU利用率也不是太高。Web服务器的HTTP请求处理操作为此类任务的典型例子。一般情况下,针对以上不同类型的异步任务需要创建不同类型的线程池,并进行针对性的参数配置。

 

1. IO密集型任务的线程数

由于IO密集型任务的CPU使用率较低,导致线程空余时间很多,因此通常需要开CPU核心数两倍的线程。当IO线程空闲时,可以启用其他线程继续使用CPU,以提高CPU的使用率。

@Slf4j  
//懒汉式单例创建线程池:用于IO密集型任务  
public class IoIntenseTargetThreadPoolLazyHolder {  /**  * IO线程池最大线程数  */  public static final int IO_MAX = Math.max(2, CPU_COUNT * 2);  /**  * 空闲保活时限,单位秒  */  public static final int KEEP_ALIVE_SECONDS = 30;  /**  * 有界队列size  */    public static final int QUEUE_SIZE = 10000;  //线程池: 用于IO密集型任务  public static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(  IO_MAX,  IO_MAX,  KEEP_ALIVE_SECONDS,  TimeUnit.SECONDS,  new LinkedBlockingQueue(QUEUE_SIZE),  new ThreadUtil.CustomThreadFactory("io"));  public static ThreadPoolExecutor getInnerExecutor() {  return EXECUTOR;  }  static {  log.info("线程池已经初始化");  EXECUTOR.allowCoreThreadTimeOut(true);  //JVM关闭时的钩子函数  Runtime.getRuntime().addShutdownHook(  new ShutdownHookThread("IO密集型任务线程池", new Callable<Void>() {  @Override  public Void call() throws Exception {  //优雅关闭线程池  shutdownThreadPoolGracefully(EXECUTOR);  return null;  }  }));  }  
}

 

有以下几点需要注意

  1. 调用allowCoreThreadTimeOut,传入了参数true,应用于核心线程,当池中的线程长时间空闲时,可以自行销毁。
  2. 使用有界队列缓冲任务而不是无界队列,如果128太小,可以根据具体需要进行增大,但是不能使用无界队列。
  3. corePoolSize和maximumPoolSize保持一致,使得在接收到新任务时,如果没有空闲工作线程,就优先创建新的线程去执行新任务,而不是优先加入阻塞队列,等待现有工作线程空闲后再执行。
  4. 使用JVM关闭时的钩子函数优雅地自动关闭线程池。

 

2. CPU密集型任务的线程数

CPU密集型任务也叫计算密集型任务,其特点是要进行大量计算而需要消耗CPU资源,比如计算圆周率、对视频进行高清解码等。

CPU密集型任务虽然也可以并行完成,但是并行的任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以要最高效地利用CPU,CPU密集型任务并行执行的数量应当等于CPU的核心数。

/**  * CPU核数  **/  
public static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();  public static final int MAXIMUM_POOL_SIZE = CPU_COUNT;  //线程池: 用于CPU密集型任务  
private static final ThreadPoolExecutor EXECUTOR = new ThreadPoolExecutor(  MAXIMUM_POOL_SIZE,  MAXIMUM_POOL_SIZE,  KEEP_ALIVE_SECONDS,  TimeUnit.SECONDS,  new LinkedBlockingQueue(QUEUE_SIZE),  new CustomThreadFactory("cpu"));  public static ThreadPoolExecutor getInnerExecutor() {  return EXECUTOR;  
}  static {  log.info("线程池已经初始化");  EXECUTOR.allowCoreThreadTimeOut(true);  //JVM关闭时的钩子函数  Runtime.getRuntime().addShutdownHook(  new ShutdownHookThread("CPU密集型任务线程池", new Callable<Void>() {  @Override  public Void call() throws Exception {  //优雅关闭线程池  shutdownThreadPoolGracefully(EXECUTOR);  return null;  }  }));  
}

 

3. 混合型任务的线程数

混合型任务既要执行逻辑计算,又要进行大量非CPU耗时操作(如RPC调用、数据库访问、网络通信等)​,所以混合型任务CPU的利用率不是太高,非CPU耗时往往是CPU耗时的数倍

比如在Web应用中处理HTTP请求时,一次请求处理会包括DB操作、RPC操作、缓存操作等多种耗时操作。一般来说,一次Web请求的CPU计算耗时往往较少,大致在100~500毫秒,而其他耗时操作会占用500~1000毫秒,甚至更多的时间。

在为混合型任务创建线程池时,如何确定线程数呢?业界有一个比较成熟的估算公式,具体如下:


最佳线程数 = ((线程等待时间+线程CPU时间) / 线程CPU时间) * CPU核数

通过公式可以看出:等待时间所占的比例越高,需要的线程就越多;CPU耗时所占的比例越高,需要的线程就越少

 

下面举一个例子:

比如在Web服务器处理HTTP请求时,假设平均线程CPU运行时间为100毫秒,而线程等待时间(比如包括DB操作、RPC操作、缓存操作等)为900毫秒,如果CPU核数为8,那么根据上面这个公式,估算如下:

900毫秒 + 100毫秒) / 100毫秒 * 8 = 10 * 8 = 80

 

二. 线程数越多越好吗

很多小伙伴认为,线程数越高越好。那么,使用很多线程是否就一定比单线程高效呢?答案是否定的。

虽然多线程在一些并发场景下能带来性能提升,但过多的线程并不意味着性能必定提升。线程数过高可能导致一些问题:

  • 上下文切换(Context Switching): 每个线程的执行都由操作系统调度,线程切换会带来额外的开销。当线程数过多时,操作系统频繁地在不同线程间切换,导致 上下文切换 成本增加,这样反而可能降低系统的整体效率。

  • 资源争用: 多线程同时访问共享资源时,可能会遇到 资源竞争锁竞争,特别是在 CPU 绑定的任务中。线程之间的协作和同步会称为性能瓶颈。

  • 内存开销: 每个线程需要占用一定的内存,维护线程栈、调度信息等,过多的线程会消耗大量的内存和系统资源,这可能会导致系统性能下降,甚至造成内存溢出

 

三. Redis 单线程的高效性

Redis 是一个 单线程 的高性能数据库,许多人可能会觉得它的设计不合常理,为什么不使用多线程来提升性能呢?然而,Redis 使用单线程反而能够达到极高的吞吐量,这是因为:

特点核心内容
1. 避免多线程上下文切换单线程模型避免了线程切换的开销,任务按顺序处理,简化了并发控制,避免了锁竞争和死锁问题。
2. 非阻塞设计采用事件驱动和 I/O 多路复用技术,非阻塞处理请求。如果一个请求需要等待外部资源(如网络 I/O),Redis 会把控制权交给其他请求,而不是阻塞线程。这种方式避免了多线程中因为等待 I/O 资源导致的线程空闲,充分利用了 CPU 的时间片。
3. CPU vs I/O 密集型Redis 的大多数操作(如 GET/SET)是 I/O 密集型 的,单线程在 I/O 密集型应用中有优势。
4. 数据访问模式Redis 操作主要是内存访问,内存操作速度快,单线程执行时没有同步问题,数据结构(如哈希表、跳表等)高效。

相关文章:

【Java异步编程】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…...

makailio-alias_db模块详解

ALIAS_DB 模块 作者 Daniel-Constantin Mierla micondagmail.com Elena-Ramona Modroiu ramonaasipto.com 编辑 Daniel-Constantin Mierla micondagmail.com 版权 © 2005 Voice Sistem SRL © 2008 asipto.com 目录 管理员指南 概述依赖 2.1 Kamailio 模块 2.2 外…...

文字显示省略号

多行文本溢出显示省略号...

[LeetCode] 字符串完整版 — 双指针法 | KMP

字符串 基础知识双指针法344# 反转字符串541# 反转字符串II54K 替换数字151# 反转字符串中的单词55K 右旋字符串 KMP 字符串匹配算法28# 找出字符串中第一个匹配项的下标#459 重复的子字符串 基础知识 字符串的结尾&#xff1a;空终止字符00 char* name "hello"; …...

从零开始部署Dify:后端与前端服务完整指南

从零开始部署Dify&#xff1a;后端与前端服务完整指南 一、环境准备1. 系统要求2. 项目结构 二、后端服务部署1. 中间件启动&#xff08;Docker Compose&#xff09;2. 后端环境配置3. 依赖安装与数据库迁移4. 服务启动 三、前端界面搭建1. 环境配置2. 服务启动 四、常见问题排…...

springboot中路径默认配置与重定向/转发所存在的域对象

Spring Boot 是一种简化 Spring 应用开发的框架&#xff0c;它提供了多种默认配置和方便的开发特性。在 Web 开发中&#xff0c;路径配置和请求的重定向/转发是常见操作。本文将详细介绍 Spring Boot 中的路径默认配置&#xff0c;并解释重定向和转发过程中存在的域对象。 一、…...

二叉树——429,515,116

今天继续做关于二叉树层序遍历的相关题目&#xff0c;一共有三道题&#xff0c;思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了&#xff0c;变成了N叉树&#xff0c;也就是该树每一个节点的子节点数量不确定&#xff0c;可能为2&a…...

Leetcode 3444. Minimum Increments for Target Multiples in an Array

Leetcode 3444. Minimum Increments for Target Multiples in an Array 1. 解题思路2. 代码实现 题目链接&#xff1a;3444. Minimum Increments for Target Multiples in an Array 1. 解题思路 这一题我的思路上就是一个深度优先遍历&#xff0c;考察target数组当中的每一个…...

分享半导体Fab 缺陷查看系统,平替klarity defect系统

分享半导体Fab 缺陷查看系统&#xff0c;平替klarity defect系统&#xff1b;开发了半年有余。 查看Defect Map&#xff0c;Defect image&#xff0c;分析Defect size&#xff0c;defect count trend. 不用再采用klarity defect系统&#xff08;license 太贵&#xff09; 也可以…...

Java基础——分层解耦——IOC和DI入门

目录 三层架构 Controller Service Dao ​编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理&#xff1f; 容器怎样才能提供依赖的bean对象呢&#xff1f; 三层架构 Controller 控制…...

DeepSeek-R1 本地部署教程(超简版)

文章目录 一、DeepSeek相关网站二、DeepSeek-R1硬件要求三、本地部署DeepSeek-R11. 安装Ollama1.1 Windows1.2 Linux1.3 macOS 2. 下载和运行DeepSeek模型3. 列出本地已下载的模型 四、Ollama命令大全五、常见问题解决附&#xff1a;DeepSeek模型资源 一、DeepSeek相关网站 官…...

Vue3学习笔记-模板语法和属性绑定-2

一、文本插值 使用{ {val}}放入变量&#xff0c;在JS代码中可以设置变量的值 <template><p>{{msg}}</p> </template> <script> export default {data(){return {msg: 文本插值}} } </script> 文本值可以是字符串&#xff0c;可以是布尔…...

csapp笔记3.6节——控制(1)

本节解决了x86-64如何实现条件语句、循环语句和分支语句的问题 条件码 除了整数寄存器外&#xff0c;cpu还维护着一组单个位的条件码寄存器&#xff0c;用来描述最近的算数和逻辑运算的某些属性。可检测这些寄存器来执行条件分支指令。 CF&#xff08;Carry Flag&#xff09…...

PYH与MAC的桥梁MII/MIIM

在学习车载互联网时&#xff0c;看到了一句话&#xff0c;Processor通过DMA直接存储访问与MAC之间进行数据的交互&#xff0c;MAC通过MII介质无关接口与PHY之间进行数据的交互。常见的以太网硬件结构是&#xff0c;将MAC集成进Processor芯片&#xff0c;将PHY留在Processor片外…...

国内flutter环境部署(记录篇)

设置系统环境变量 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn使用以下命令下载flutter镜像 git clone -b stable https://mirror.ghproxy.com/https://github.com/<github仓库地址>#例如flutter仓…...

选择排序_75. 颜色分类

75. 颜色分类 - 力扣&#xff08;LeetCode&#xff09; 题目不追求稳定 可以选择选择排序 这是我没看教程代码之前写的 有点复杂了 我还把元素后移了 class Solution { public:void sortColors(vector<int>& nums) {int min_num_index -1;int min_num 3;for(int i…...

C++ Primer 标准库vector

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

C# 数组和列表的基本知识及 LINQ 查询

数组和列表的基本知识及 LINQ 查询 一、基本知识二、引用命名空间声明三、数组3.1、一维数组3.2、二维数组3.3、不规则数组 Jagged Array 四、列表 List4.1、一维列表4.2、二维列表 五、数组和列表使用 LINQ的操作和运算5.1、一维 LIST 删除所有含 double.NaN 的行5.2、一维 LI…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

w191教师工作量管理系统的设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…...

Git 版本控制:基础介绍与常用操作

目录 Git 的基本概念 Git 安装与配置 Git 常用命令与操作 1. 初始化本地仓库 2. 版本控制工作流程 3. 分支管理 4. 解决冲突 5. 回退和撤销 6. 查看提交日志 前言 在软件开发过程中&#xff0c;开发者常常需要在现有程序的基础上进行修改和扩展。但如果不加以管理&am…...

讲清逻辑回归算法,剖析其作为广义线性模型的原因

1、逻辑回归算法介绍 逻辑回归(Logistic Regression)是一种广义线性回归分析模型。虽然名字里带有“回归”两字&#xff0c;但其实是分类模型&#xff0c;常用于二分类。既然逻辑回归模型是分类模型&#xff0c;为什么名字里会含有“回归”二字呢&#xff1f;这是因为其算法原…...

数据结构(1)——算法时间复杂度与空间复杂度

目录 前言 一、算法 1.1算法是什么&#xff1f; 1.2算法的特性 1.有穷性 2.确定性 3.可行性 4.输入 5.输出 二、算法效率 2.1衡量算法效率 1、事后统计方法 2、事前分析估计方法 2.2算法的复杂度 2.3时间复杂度 2.3.1定义 2.3.2大O渐进表示法 2.3.3常见时间复…...

K8s运维管理平台 - xkube体验:功能较多

目录 简介Lic安装1、需要手动安装MySQL&#xff0c;**建库**2、启动命令3、[ERROR] GetNodeMetric Fail:the server is currently unable to handle the request (get nodes.metrics.k8s.io qfusion-1) 使用总结优点优化 补充1&#xff1a;layui、layuimini和beego的详细介绍1.…...

spring源码阅读系列文章目录

对于spring认识首先要了解 spring相关概念术语&#xff0c;然后是如下的几句话牢记并反射出来&#xff1a; Bean怎么来的&#xff0c;通过BeanDefinitionBeanDefinition有Spring框架内置的&#xff0c;有手动定义或者自动配置扫描出来的&#xff08;写个Demo工程&#xff09;B…...

快速提升网站收录:利用网站新闻发布功能

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/63.html 利用网站新闻发布功能快速提升网站收录是一个有效的策略。以下是一些具体的建议&#xff0c;帮助你更好地利用这一功能&#xff1a; 一、保持新闻更新频率 搜索引擎尤其重视网站的…...

【14】WLC3504 HA配置实例

1.概述 本文档使用 Cisco WLC 3504 实现无线控制器的高可用性。这里所指的HA是指WLC设备box-to-box的冗余。换句话说,即1:1的设备冗余,其中一个 WLC 将处于Active活动状态,而第二个 WLC 将处于Standby-hot热待机状态,通过RP冗余端口持续监控活动 WLC 的运行状况。两个 WLC…...

什么是LPU?会打破全球算力市场格局吗?

在生成式AI向垂直领域纵深发展的关键节点&#xff0c;一场静默的芯片革命正在改写算力规则。Groq研发的LPU&#xff08;Language Processing Unit&#xff09;凭借其颠覆性架构&#xff0c;不仅突破了传统GPU的性能天花板&#xff0c;更通过与DeepSeek等国产大模型的深度协同&a…...

智慧物业管理系统实现社区管理智能化提升居民生活体验与满意度

内容概要 智慧物业管理系统&#xff0c;顾名思义&#xff0c;是一种将智能化技术融入社区管理的系统&#xff0c;它通过高效的手段帮助物业公司和居民更好地互动与沟通。首先&#xff0c;这个系统整合了在线收费、停车管理等功能&#xff0c;让居民能够方便快捷地完成日常支付…...

Vue3 表单:全面解析与最佳实践

Vue3 表单&#xff1a;全面解析与最佳实践 引言 随着前端技术的发展&#xff0c;Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本&#xff0c;带来了许多改进和新的特性。其中&#xff0c;表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 …...