做一个好的网站需要什么/百度运营平台
基于RAG的知识库问答系统
结合语义检索与大语言模型技术,实现基于私有知识库的智能问答解决方案。采用两阶段处理架构,可快速定位相关文档并生成精准回答。
核心功能
-
知识向量化引擎
- 支持多语言文本嵌入(all-MiniLM-L6-v2模型)
- 自动生成768维语义向量
- 毫秒级相似度匹配(FAISS索引)
-
智能问答引擎
- 上下文感知问答生成
- 知识库内容优先回答策略
- 自动回退通用回答机制
技术架构
数据流架构:
[用户提问] → 向量编码 → FAISS检索 → 上下文构造 → LLM生成 → [结构化回答]组件栈:
- 语义编码层:Sentence-Transformers
- 向量检索层:FAISS
- 生成层:Deepseek LLM
典型应用场景
- 企业知识库智能客服
- 技术文档即时问答
- 领域专家系统构建
- 教育知识检索辅助
快速开始示例
# 初始化知识库
documents = ["华为成立于1987年,总部位于深圳","深度学习是机器学习的一个子领域","TCP/IP协议包含四层网络模型"
]# 执行问答流程
question = "华为的总部在哪里?"
related_docs = search_knowledge_base(question)
answer = generate_answer_with_openai(question, related_docs)
注意事项
- 知识库更新需重新构建索引
- API密钥需加密存储
- 建议添加结果验证机制
- 文档缺失时的降级处理策略
该解决方案特别适用于需要结合私有知识库与生成式AI的场景,在保证回答准确性的同时提供自然语言交互体验。系统架构支持水平扩展,可轻松应对万级文档规模的业务需求。
Python实现
from openai import OpenAI
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer# 文档集合
documents = ["The capital of France is Paris.","Python is a programming language.","The Eiffel Tower is in Paris.","The capital of the USA is Washington, D.C.","The Eiffel Tower is a famous landmark in Paris.",
]# 使用 sentence-transformers 获取文档的向量表示
model = SentenceTransformer("all-MiniLM-L6-v2")
doc_embeddings = model.encode(documents)# 创建 FAISS 索引
doc_embeddings_np = np.array(doc_embeddings).astype("float32")
index = faiss.IndexFlatL2(doc_embeddings_np.shape[1]) # 使用 L2 距离的索引
index.add(doc_embeddings_np) # 将文档向量添加到索引中# 查询知识库
def search_knowledge_base(query, k=2):query_embedding = model.encode([query])query_embedding_np = np.array(query_embedding).astype("float32")_, indices = index.search(query_embedding_np, 1) # 获取最相似的 k 个文档return [documents[i] for i in indices[0]]# 使用 OpenAI API 生成回答
def generate_answer_with_openai(query, retrieved_docs):input_text = f"根据以下文档内容回答问题:{query}。文档内容如下:\n{retrieved_docs}" # 合并问题和文档client = OpenAI(api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",base_url="https://api.deepseek.com",)response = client.chat.completions.create(model="deepseek-chat",messages=[{"role": "system", "content": "You are a helpful assistant. Please answer the question based on the provided documents. If the documents do not contain enough information, you can provide a general answer."},{"role": "user","content": input_text,}, # 合并问题和文档],stream=False,)answer = response.choices[0].message.contentreturn answer# 示例:生成回答
query = "What is the capital of France?"
retrieved_docs = search_knowledge_base(query) # 查询知识库
answer = generate_answer_with_openai(query, retrieved_docs) # 使用 OpenAI API 生成回答print('query: ', query)
print('retrieved_docs: ', retrieved_docs)
print("Answer:", answer)
相关文章:

基于RAG的知识库问答系统
基于RAG的知识库问答系统 结合语义检索与大语言模型技术,实现基于私有知识库的智能问答解决方案。采用两阶段处理架构,可快速定位相关文档并生成精准回答。 核心功能 知识向量化引擎 支持多语言文本嵌入(all-MiniLM-L6-v2模型)自…...

SQL/Panda映射关系
Pandas教程(非常详细)_pandas 教程-CSDN博客 SQL:使用SELECT col_1, col_2 FROM tab; Pandas:使用df[[col_1, col_2]]。 SQL:使用SELECT * FROM tab WHERE col_1 11 AND col_2 > 5; Pandas:使用df…...

自定义数据集 使用paddlepaddle框架实现逻辑回归
导入必要的库 import numpy as np import paddle import paddle.nn as nn 数据准备: seed1 paddle.seed(seed)# 1.散点输入 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6…...
Docker入门篇(Docker基础概念与Linux安装教程)
目录 一、什么是Docker、有什么作用 二、Docker与虚拟机(对比) 三、Docker基础概念 四、CentOS安装Docker 一、从零认识Docker、有什么作用 1.项目部署可能的问题: 大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题࿱…...

c/c++高级编程
1.避免变量冗余初始化 结构体初始化为0,等价于对该内存进行一次memset,对于较大的结构体或者热点函数,重复的赋值带来冗余的性能开销。现代编译器对此类冗余初始化代码具有一定的优化能力,因此,打开相关的编译选项的优…...

2024-我的学习成长之路
因为热爱,无畏山海...

vscode软件操作界面UI布局@各个功能区域划分及其名称称呼
文章目录 abstract检查用户界面的主要区域官方文档关于UI的介绍 abstract 检查 Visual Studio Code 用户界面 - Training | Microsoft Learn 本质上,Visual Studio Code 是一个代码编辑器,其用户界面和布局与许多其他代码编辑器相似。 界面左侧是用于访…...

xmind使用教程
xmind使用教程 前言xmind版本信息“xmind使用教程”的xmind思维导图 前言 首先xmind是什么?XMind 是一款思维导图和头脑风暴工具,用于帮助用户组织和可视化思维、创意和信息。它允许用户通过图形化的方式来创建、整理和分享思维导图,可以用于…...

Day33【AI思考】-分层递进式结构 对数学数系的 终极系统分类
文章目录 **分层递进式结构** 对数学数系的 **终极系统分类**总览**一、数系演化树(纵向维度)**数系扩展逻辑树**数系扩展逻辑** **二、代数结构对照表(横向维度)**数系扩展的数学意义 **三、几何对应图谱(空间维度&am…...

k8s二进制集群之ETCD集群证书生成
安装cfssl工具配置CA证书请求文件创建CA证书创建CA证书策略配置etcd证书请求文件生成etcd证书 继续上一篇文章《负载均衡器高可用部署》下面介绍一下etcd证书生成配置。其中涉及到的ip地址和证书基本信息请替换成你自己的信息。 安装cfssl工具 下载cfssl安装包 https://github…...

MySQL5.5升级到MySQL5.7
【卸载原来的MySQL】 cmd打开命令提示符窗口(管理员身份)net stop mysql(先停止MySQL服务) 3.卸载 切换到原来5.5版本的bin目录,输入mysqld remove卸载服务 测试mysql -V查看Mysql版本还是5.5 查看了环境变量里的…...

Golang Gin系列-9:Gin 集成Swagger生成文档
文档一直是一项乏味的工作(以我个人的拙见),但也是编码过程中最重要的任务之一。在本文中,我们将学习如何将Swagger规范与Gin框架集成。我们将实现JWT认证,请求体作为表单数据和JSON。这里唯一的先决条件是Gin服务器。…...

利用Python高效处理大规模词汇数据
在本篇博客中,我们将探讨如何使用Python及其强大的库来处理和分析大规模的词汇数据。我们将介绍如何从多个.pkl文件中读取数据,并应用一系列算法来筛选和扩展一个核心词汇列表。这个过程涉及到使用Pandas、Polars以及tqdm等库来实现高效的数据处理。 引…...

【PyQt】超级超级笨的pyqt计算器案例
计算器 1.QT Designer设计外观 1.pushButton2.textEdit3.groupBox4.布局设计 2.加载ui文件 导入模块: sys:用于处理命令行参数。 QApplication:PyQt5 应用程序类。 QWidget:窗口基类。 uic:用于加载 .ui 文件。…...

Git 的起源与发展
序章:版本控制的前世今生 在软件开发的漫长旅程中,版本控制犹如一位忠诚的伙伴,始终陪伴着开发者们。它的存在,解决了软件开发过程中代码管理的诸多难题,让团队协作更加高效,代码的演进更加有序。 简单来…...

预防和应对DDoS的方法
DDoS发起者通过大量的网络流量来中断服务器、服务或网络的正常运行,通常由多个受感染的计算机或联网设备(包括物联网设备)发起。 换种通俗的说法,可以将其想象成高速公路上的一次突然的大规模交通堵塞,阻止了正常的通勤…...

51单片机开发:独立按键实验
实验目的:按下键盘1时,点亮LED灯1。 键盘原理图如下图所示,可见,由于接GND,当键盘按下时,P3相应的端口为低电平。 键盘按下时会出现抖动,时间通常为5-10ms,代码中通过延时函数delay…...

02.04 数据类型
请写出以下几个数据的类型: 整数 a ----->int a的地址 ----->int* 存放a的数组b ----->int[] 存放a的地址的数组c ----->int*[] b的地址 ----->int* c的地址 ----->int** 指向printf函数的指针d ----->int (*)(const char*, ...) …...

FPGA学习篇——开篇之作
今天正式开始学FPGA啦,接下来将会编写FPGA学习篇来记录自己学习FPGA 的过程! 今天是大年初六,简单学一下FPGA的相关概念叭叭叭! 一:数字系统设计流程 一个数字系统的设计分为前端设计和后端设计。在我看来࿰…...

【Cadence仿真技巧学习笔记】求解65nm库晶体管参数un, e0, Cox
在设计放大器的第一步就是确定好晶体管参数和直流工作点的选取。通过阅读文献,我了解到L波段低噪声放大器的mos器件最优宽度计算公式为 W o p t . p 3 2 1 ω L C o x R s Q s p W_{opt.p}\frac{3}{2}\frac{1}{\omega LC_{ox}R_{s}Q_{sp}} Wopt.p23ωLCoxRs…...

【RocketMQ】RocketMq之IndexFile深入研究
一:RocketMq 整体文件存储介绍 存储⽂件主要分为三个部分: CommitLog:存储消息的元数据。所有消息都会顺序存⼊到CommitLog⽂件当中。CommitLog由多个⽂件组成,每个⽂件固定⼤⼩1G。以第⼀条消 息的偏移量为⽂件名。 ConsumerQue…...

小白零基础--CPP多线程
进程 进程就是运行中的程序线程进程中的进程 1、C11 Thread线程库基础 #include <iostream> #include <thread> #include<string>void printthread(std::string msg){std::cout<<msg<<std::endl;for (int i 0; i < 1000; i){std::cout<…...

利用deepseek参与软件测试 基本架构如何 又该在什么环节接入deepseek
利用DeepSeek参与软件测试,可以考虑以下基本架构和接入环节: ### 基本架构 - **数据层** - **测试数据存储**:用于存放各种测试数据,包括正常输入数据、边界值数据、异常数据等,这些数据可以作为DeepSeek的输入&…...

大模型微调技术总结及使用GPU对VisualGLM-6B进行高效微调
1. 概述 在深度学习中,微调(Fine-tuning)是一种重要的技术,用于改进预训练模型的性能。在预训练模型的基础上,针对特定任务(如文本分类、机器翻译、情感分析等),使用相对较小的有监…...

WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器
WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器 一、前言二、WPF 样式基础2.1 什么是样式2.2 样式的定义2.3 样式的应用 三、WPF 模板基础3.1 什么是模板3.2 控件模板3.3 数据模板 四、样式与模板的高级应用4.1 样式继承4.2 模板绑定4.3 资源字典 五、实际应用…...

Java 大视界 -- Java 大数据在自动驾驶中的数据处理与决策支持(68)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...

自动化构建-make/Makefile 【Linux基础开发工具】
文章目录 一、背景二、Makefile编译过程三、变量四、变量赋值1、""是最普通的等号2、“:” 表示直接赋值3、“?” 表示如果该变量没有被赋值,4、""和写代码是一样的, 五、预定义变量六、函数**通配符** 七、伪目标 .PHONY八、其他常…...

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…...

通信方式、点对点通信、集合通信
文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!通信实现方式:机器内通信、机器间通信通信实现方式:通讯协调通信实现方式:机器内通信:PCIe通信实现方式:机器内通信:NVLink通信实现…...

TCP编程
1.socket函数 int socket(int domain, int type, int protocol); 头文件:include<sys/types.h>,include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...