当前位置: 首页 > news >正文

手机网站建站价格/seo超级外链发布

手机网站建站价格,seo超级外链发布,国外做问卷网站,app制作工具下载主从复制 单点问题: 在分布式系统中,如果某个服务器程序,只有一个节点(也就是一个物理服务器)来部署这个服务器程序的话,那么可能会出现以下问题: 1.可用性问题:如果这个机器挂了…

主从复制

单点问题:

在分布式系统中,如果某个服务器程序,只有一个节点(也就是一个物理服务器)来部署这个服务器程序的话,那么可能会出现以下问题:

1.可用性问题:如果这个机器挂了,那么意味着怎么服务器也就挂了

2.性能/支持的并发量也是有限的

在分布式系统中,往往会希望多个服务器来部署Redis服务,从而构造一个Redis集群;此时就可以让这个集群给整个分布式提供更加高效/稳定的数据存储服务等;

在分布式系统中,有多个服务器部署Redis,往往有以下几种方式:

1.主从模式

2.主从+哨兵

3.集群


配置主从模式:

在若干个Redis节点中,有“主”节点,也有“从”节点 

例如:

从节点必须听主节点,从节点内的数据跟主节点保存同步(从节点就是主节点的副本)~

在原本,只有一个主节点保持大量的数据,引入从节点,可以将主节点上的数据复制出来放到从节点中,后续主节点有任何修改也会同步到从节点上~

主从模式主要是针对“读操作”进行并发了和可用性的提高 
而“写操作”只能依赖主节点,主节点只能有一个
在实际业务中,“读操作”往往比“写操作”更加频繁

如果挂了从节点的话,影响并不会很多啊,可以从其他从节点读取数据,效果是一样的;
但如果挂了主节点的话,那么只能读数据,不能写数据了,还有有一定的影响~

因为目前只有一台云服务器,所有需要启动多个Redis服务器进程,配置一个主节点,俩个从节点
主节点默认端口为6379,从节点默认端口分别为6380,6381

1.给从节点设置配置文件

root@iZbp1j57qexhmdoyijkse9Z:/etc/redis# mkdir redis-conf
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis# cd redis-conf/
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis/redis-conf# pwd
/etc/redis/redis-conf
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis/redis-conf# cp /etc/redis/redis.conf ./slave1.conf
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis/redis-conf# cp /etc/redis/redis.conf ./slave2.conf
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis/redis-conf# ls
slave1.conf  slave2.conf

在它们的配置文件中修改: 

修改端口号

 

修改其 daemonize 为 yes。


删除它们的进程 重新启动 

 此时用命令 info replication 可以查看它们当前的属性

127.0.0.1:6379> set key 111
OK
127.0.0.1:6379> get key
"111"
127.0.0.1:6379> 
root@iZbp1j57qexhmdoyijkse9Z:/etc/redis/redis-conf# redis-cli -p 6380
127.0.0.1:6380> get key
"111"
127.0.0.1:6380> set key 222
(error) READONLY You can't write against a read only replica.

此时主节点插入了数据 从节点也可以查询到,但是从节点不能插入数据 

此时我们的结构已经搭建完成

拓扑结构: 

若干个节点之间,按照怎么样的方式来进行组织连接:一主一从、一主多从、树状主从结构。

一主一从 

这是最简单的结构,用于主节点出现宕机时从节点提供故障转移支持;

如果写数据请求太多的话,会给主节点带来一定的压力;

那么可以关闭主节点的AOF机制,只保留从节点上的AOF,这样既可以保证数据的安全性,也可以避免持久化对主节点的性能影响;

但如果主节点挂了的话,此时没有AOF文件,那么将会丢失数据,进一步进行主从同步,从节点的数据也被删除了~
改进方法:当主节点挂了话,主节点从从节点上获取AOF文件数据

 一主多从

在数据量较大的场景下,可以把读命令负载均衡到不同的从节点上分担压力;

同时一些耗时的读命令可以指定⼀台专门的从节点执行,避免破坏整体的稳定性。
但是随之从节点的增加,同步每一条数据,就需要传输多次,导致主节点的负载

树形结构:

 树据写入节点 A 之后会同步给 B 和 C 节点,B 节点进一步把数据同步给 D 和 E 节点。当主节点需要挂载等多个从节点时为了避免对主节点的性能干扰,但同步的延时是比刚才长的

原理:

主从节点建立复制流程图:

1.先保存主节点的ip和端口变量等信息

2、建立TCP的网络连接,三次握手,为了验证通信双方是否能够正确的读写数据

3.验证主节点是否能够正常的工作 从节点发送ping命令 主节点返回pong

4.如果主节点设置了 requirepass 参数,则需要密码验证

数据同步:

Redis提供了psync命名完成主从数据的同步

PSYNC 的语法格式     PSYNC replicationid offset

理解下面过程,先了解一下前提概念:

 1.replicationid/replid (复制id)

主节点的复制id,主节点重新启动,或者从从节点晋升到主节点的时候,也会生成这个id(即便是同一个主节点,在它重启的时候,生成的id都是不同的)

主节点和从节点建立复制关系的时候,就会从主节点这边获取replicationId

2.offset(偏移量)

这个是主节点和从节点上都会维护的一个参数-------偏移量(整数)

主节点上会收到很多的修改操作的命令,每个命令会占据几个字节,煮鸡蛋会把这些修改命令的字节数都累加起来~

从节点的偏移量就描述了此时从节点这边的数据同步到哪一步~

如果从节点和主节点上的偏移量一致,说明已经同步了~

replid + offset 共同标识了一个 "数据集".

如果两个节点, 他们的 replid 和 offset 都相同, 则这两个节点上持有的数据, 就一定相同.

info replication 命令中可以查看到:

psync过程:

1)从节点发送 psync 命令给主节点,replid 和 offset 的默认值分别是 ? 和 -1.   
2)主节点根据 psync 参数和自身数据情况决定响应结果: 

  •  如果回复 +FULLRESYNC replid offset,则从节点需要进行全量复制流程。 
  •  如果回复 +CONTINEU,从节点进行部分复制流程。 
  •  如果回复 -ERR,说明 Redis 主节点版本过低,不支持 psync 命令。从节点可以使用 sync 命令进行全量复制

同步过程分为:全量复制和部分复制。 

  • 全量复制:一般用于初次复制场景,Redis 早期支持的复制功能只有全量复制,它会把主节点全部数据一次性发送给从节点,当数据量较大时,会对主从节点和网络造成很大的开销。
  • 部分复制:用于处理在主从复制中因网络闪断等原因造成的数据丢失场景,当从节点再次连上主节点后,如果条件允许,主节点会补发数据给从节点。因为补发的数据远小于全量数据,可以有效避免全量复制的过高开销。

主要就是看offset这里的进度~
如果offset写作-1,就是获取全量数据;
如果写作具体的整数,那么就是从当前偏移量位置获取数据;

全量复制:

当首次主节点进行数据同步的时候或者主节点不方便部分复制的时候;

全量复制流程:

1)从节点发送 psync 命令给主节点进行数据同步,由于是第一次进行复制,从节点没有主节点的运行 ID 和复制偏移量,所以发送 psync ? -1。 
2)主节点根据命令,解析出要进行全量复制,回复 +FULLRESYNC 响应。 
3)从节点接收主节点的运行信息进行保存。 
4)主节点执行 bgsave 进行 RDB 文件的持久化。 
5)主节点发送 RDB 文件给从节点,从节点保存 RDB 数据到本地硬盘。 
6)主节点将从生成 RDB 到接收完成期间执行的写命令,写入缓冲区中,等从节点保存完 RDB ⽂件后,主节点再将缓冲区内的数据补发给从节点,补发的数据仍然按照 rdb 的⼆进制格式追加写入到收到的 rdb 文件中. 保持主从一致性。 
7)从节点清空自身原有旧数据。 
8)从节点加载 RDB 文件得到与主节点一致的数据。 
9)如果从节点加载 RDB 完成之后,并且开启了 AOF 持久化功能,它会进行 bgrewrite 操作,得到最近的 AOF 文件。

部分复制:

从节点要从主节点这里进行全量复制,全量复制开销很大,有些时候,从节点本身就已经持有主节点大部分数据,所有不需要全量复制;或者出现网络波动的情况,主节点修改的数据无法同步过来,等到网络波动结束,主节点和从节点重新建立连接,那么就需要同步数据~

流程:

 
1)当主从节点之间出现网络中断时,如果超过 repl-timeout 时间,主节点会认为从节点故障并终端复制连接。
2)主从连接中断期间主节点依然响应命令,但这些复制命令都因网络中断无法及时发送给从节点,所以暂时将这些命令滞留在复制积压缓冲区中。
3)当主从节点网络恢复后,从节点再次连上主节点。 
4)从节点将之前保存的 replicationId 和 复制偏移量作为 psync 的参数发送给主节点,请求进行部分复制。
5)主节点接到 psync 请求后,进行必要的验证。随后根据 offset 去复制积压缓冲区查找合适的数据,并响应 +CONTINUE 给从节点。 
6)主节点将需要从节点同步的数据发送给从节点,最终完成一致性。


实时复制:

主从节点建立连接之后,主节点会把自己之后收到的修改操作,通过tcp长连接的方式,源源不断的传输给主节点,从节点会根据这些请求同时修改自身的数据,保存主从数据一致性~

这样的长连接,会通过心跳包的方式维护连接状态;

心跳包机制:
主节点:默认每隔10s给从节点发送ping命令,从节点收到返回pong

从节点:默认每隔1s给主节点发送一个特定的请求,就会上报此时从节点复制数据的进度(offset)

如果主节点发现从节点通信延迟超过 repl-timeout 配置的值(默认 60 秒),则判定从节点下线,断开复制客户端连接。从节点恢复连接后,心跳机制继续进行。


哨兵(Sentinel)

在主从模式中,一旦主节点挂了,那么就只剩下从节点了;虽然能够提供读操作,但是不能写入数据,从节点不能自动的升级为主节点,不能替原来主节点对应的角色;通过人工的方式太不靠谱了(人不能一天24个小时盯着机器看),所有此时Redis提供了“哨兵”机制就是为了解决这一问题,让程序保存“高可用”状态~

当主节点出现故障时,Redis Sentinel 能自动完成故障发现和故障转移,并通知应用方,从而实现真正的高可用。
 

哨兵架构:

每一个哨兵节点都是单独的进程,并且会提供奇数个

Redis哨兵的核心功能就是

这些哨兵会对现有的主从节点建立长连接,定期发送心跳包,借助上述的机制,就可以及时发现某个主机挂了;

如果从节点挂了,那么其实没有关系;

如果主节点挂了,那么哨兵就要发挥它们的作用;

此时一个哨兵发现挂了还不够,需要多个哨兵节点来共同认同这件事,为了防止误判的情况;如果发现主节点确实挂了,那么哨兵们就会在这些从节点中推荐一个新的主节点;挑选出新的主节点之后,哨兵节点就会控制这个新的主节点,执行让其他的从节点转移到新的主节点上面;最后哨兵会通知客户端程序,告知新的主节点是哪个,让后续客户端再进行写操作针对新的主节点进行操作~~~

 通过上面的介绍,可以看出 Redis Sentinel 具有以下几个功能: 

  • 监控: Sentinel 节点会定期检测 Redis 数据节点、其余哨兵节点是否可达。 
  • 故障转移: 实现从节点晋升(promotion)为主节点并维护后续正确的主从关系。 
  •  通知: Sentinel 节点会将故障转移的结果通知给应用方。

部署哨兵(基于docker)

由于只有一个云服务器,但是需要6个节点,基于在虚拟机上实现;

docker可以认为是一个“轻量级”的虚拟机;起到了虚拟机这样隔离环境的效果,但是又不会吃很多硬件资源;

略......................


哨兵选举原理:

1.主观下线:

当主节点宕机时,此时主节点和三个哨兵节点的心跳包没有了;

站在哨兵节点的角度上,主节点发生了严重故障,因此三个哨兵节点会把主节点判断为主观下线(SDown);

2.客观下线:

多个哨兵节点认为主节点挂了,那就是挂了,当故障得票数 >= 配置的法定票数

这就是客观下线(ODown)

3.选举出哨兵的leader

此时接下来只需要从剩下的从节点中选一个当主节点出来,但这个工作不需要多个哨兵都参与,只需要选出一个代表(leader),由这个leader负责升级从节点到主节点这个过程;

哨兵之间的选举涉及到Raft算法
Raft 的领导选举是通过“投票”机制来完成的,每个节点都会投票选举一个领导者。在选举过程中,候选人会向其他节点请求投票,如果得到大多数节点的支持,它就成为新的领导者。
简而言之, Raft 算法的核心就是 "先下手为强". 谁率先发出了拉票请求, 谁就有更大的概率成为 leader.
无论选到谁作为leader都不重要,只需要能选出来一个节点即可~

4) leader 挑选出合适的从节点成为新的主节点

挑选规则:

  1. 比较优先级. 优先级高(数值小的)的上位. 优先级是配置文件中的配置项( slave-priority  或者 replica-priority ). 
  2. 比较  replication offset  谁复制的数据多, 高的上位.  
  3. 比较  run id , 谁的 id 小 谁上位.  

当某个 slave 节点被指定为 master 之后,  
1. leader 指定该节点执行  slave no one , 成为 master 
2. leader 指定剩余的 slave 节点, 都依附于这个新 master 


集群

上述的哨兵模式,虽然提高了系统的可用性,但是真实存储数据的还是主节点和从节点,所有的数据都存储在主从节点上;如果数据量超过了主从节点的内存上,那么就可能出现严重问题了~

所以就可以加入多台机器,可以解决内存不够的情况,引入多组主从节点,从而构成一个更大的整体,称为集群~

例如此时1TB的数据被分块成三份,那么每一组机器只需要存储整个数据全集的 1/3 即可.

数据分片算法

数据可以分层多份,那么要怎么样分,才是最合适的呢?

1.哈希求余

借鉴了哈希表的基本思想,借助hash函数,把一个key映射到一个整数上,再针对数组的长度求余,就可以得到一个数组下标

设有 N 个分片, 使用 [0, N-1] 这样序号进行编号.

N 为 3 的时候, [100, 120] 这 21 个 hash 值的分布 (此处假定计算出的 hash 值是一个简单的整数, 方便肉眼观察)

优点: 简单高效, 数据分配均匀.

但是缺点更加明显,一旦需要扩容,原有的映射规则就会被破坏,此时需要重新计算,重新排列,所有需要大量的搬运

如上图可以看到, 整个扩容一共 21 个 key, 只有 3 个 key 没有经过搬运, 其他的 key 都是搬运过的.

2.一致性哈希算法

在哈希求余算法过程中,每个key属于哪个分片,是交替出现的(这就导致搬运成本大大提高),在一致性哈希算法中,可以将交替出现,改进成连续出现~

 此时,如果新增一块分片,那么只需在环上重新安排一块区间

此时只需将0号分片的数据搬运到3号分片即可,那么1号和2号分片的区间是不变的~
但是由于1号和2号数据不变,那么它们所属的分片上的数据量就不均匀了,有的多有的少,数据倾斜;

3.哈希槽分区算法 (Redis 使用)

为了解决上述搬运成本高和数据分配不均匀的问题,Redis引入了哈希槽算法;

hash_slot = crc16(key) % 16384  crc16 也是一种 hash 算法.
16384 其实是 16 * 1024, 也就是 2^14.

相当于是把整个哈希值, 映射到 16384 个槽位上, 也就是 [0, 16383].

然后再把这些槽位比较均匀的分配给每个分片. 每个分片的节点都需要记录自己持有哪些分片.

 假设当前有三个分片, 一种可能的分配方式: 
• 0 号分片: [0, 5461], 共 5462 个槽位 
• 1 号分片: [5462, 10923], 共 5462 个槽位 
• 2 号分片: [10924, 16383], 共 5460 个槽位 

 

如果需要进行扩容, 比如新增一个 3 号分片, 就可以针对原有的槽位进行重新分配.  
比如可以把之前每个分片持有的槽位, 各拿出一点, 分给新分篇.  
⼀种可能的分配方式: 
• 0 号分片: [0, 4095], 共 4096 个槽位 
• 1 号分片: [5462, 9557], 共 4096 个槽位 
• 2 号分篇: [10924, 15019], 共 4096 个槽位 
• 3 号分片[4096, 5461] + [9558, 10923] + [15019, 16383], 共 4096 个槽位 

搭建集群:

通常集群的搭建都是三个主节点,六个从节点这样的形式

搭建过程复杂略..........


 主节点宕机处理流程:

  • 自动故障检测
    节点间通过 Gossip 协议 定期交换状态信息。若某主节点被多数节点标记为不可达(通过心跳超时判断),集群会触发故障转移。

  • 故障转移流程

    1. 从节点发起竞选。

    2. 其他主节点投票选出新的主节点。

    3. 原主节点的槽重新分配给新主节点。

    4. 客户端自动重定向到新主节点。


小结: 

主从模式主要是数据冗余和读写分离。主节点处理写,从节点复制数据并处理读,这样可以提高读的吞吐量。但主从模式的问题在于主节点单点故障,这时候就需要哨兵来监控和自动故障转移。哨兵确保当主节点宕机时,能自动选一个从节点升级为主,保证系统的高可用性。不过,主从加哨兵还是单主节点,写操作还是受限于主节点的性能,无法水平扩展。

接下来是集群,它通过分片解决数据量过大和写性能的问题。集群将数据分散到多个主节点,每个节点负责一部分数据,这样写操作可以分布到不同节点,提高了整体性能。同时,每个主节点有对应的从节点,保证高可用。用户可能需要处理大量数据或高并发写入,这时候集群就比主从加哨兵更合适。

对比总结

架构核心目标优点缺点适用场景
主从模式数据冗余、读写分离简单易用,成本低手动故障恢复,单点写入瓶颈小规模应用,数据备份
哨兵模式高可用性(自动故障转移)自动化故障转移,服务发现无法扩展写性能,不分片中等规模,高可用需求
集群模式数据分片 + 高可用 + 水平扩展支持大规模数据和高并发,高可用配置复杂,事务受限大数据量、高并发、高可用需求

  • 主从模式 → 主从 + 哨兵 → 集群模式
    随着业务增长,逐步从单点冗余过渡到自动化高可用,最终通过分片解决性能和容量瓶颈。

  • 集群模式 是终极方案,但复杂度高,需根据实际需求权衡是否必要。

相关文章:

【Redis】主从模式,哨兵,集群

主从复制 单点问题: 在分布式系统中,如果某个服务器程序,只有一个节点(也就是一个物理服务器)来部署这个服务器程序的话,那么可能会出现以下问题: 1.可用性问题:如果这个机器挂了…...

互联网行业常用12个数据分析指标和八大模型

本文目录 前言 一、互联网线上业务数据分析的12个指标 1. 用户数据(4个) (1) 存量(DAU/MAU) (2) 新增用户 (3) 健康程度(留存率) (4) 渠道来源 2. 用户行为数据(4个) (1) 次数/频率…...

多模块协同信息安全管理平台

1.产品介绍 产品名称 【SecureMOS - 多模块协同信息安全管理平台】 主要功能: [功能1] 模块化架构设计与集成 具体作用与使用方式: 通过模块化的设计,将信息安全系统分解为多个独立且可扩展的组件,便于快速部署和维护。需求满足与问题解…...

基于RK3588/RK3576+MCU STM32+AI的储能电站电池簇管理系统设计与实现

伴随近年来新型储能技术的高质量规模化发展,储能电站作为新能源领域的重要载体, 旨在配合逐步迈进智能电网时代,满足电力系统能源结构与分布的创新升级,给予相应规模 电池管理系统的设计与实现以新的挑战。同时,电子系…...

使用LightGlue进行图像配准并提取图像重叠区域

发表日期:2023年6月23日 项目地址:https://github.com/cvg/LightGlue https://github.com/cvg/glue-factory/ LightGlue是一个在精度上媲美Superglue,但在速度上比Superglue快一倍的模型。通过博主实测,LightGlue的配准效果比Su…...

DeepSeek-R1:开源机器人智能控制系统的革命性突破

目录 引言 一、DeepSeek-R1 的概述 1.1 什么是 DeepSeek-R1? 1.2 DeepSeek-R1 的定位 二、DeepSeek-R1 的核心特性 2.1 实时控制能力 2.2 多传感器融合 2.3 路径规划与导航 2.4 人工智能集成 2.5 开源与模块化设计 2.6 跨平台支持 三、DeepSeek-R1 的技术…...

第二十二章 MySQL锁之全局锁

目录 一、锁概述 二、全局锁概念 三、全局锁使用 四、全局锁特点 五、不加锁一致性数据备份 5.1. 实现方式 5.2. 优点和缺点 一、锁概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O&#x…...

pytorch实现简单的情感分析算法

人工智能例子汇总:AI常见的算法和例子-CSDN博客 在PyTorch中实现中文情感分析算法通常涉及以下几个步骤:数据预处理、模型定义、训练和评估。下面是一个简单的实现示例,使用LSTM模型进行中文情感分析。 1. 数据预处理 首先,我…...

Win11关闭登录密码?

或者使用winR快捷键, 输入: netplwiz 进入页面后,按照提示按ctrlaltdel键更改密码。 在跳转页面点击更改密码。 输入原密码后,将新密码设置为空即可。 Win11的两个实用技巧系列之如何关闭登录密码?_win11关闭密码还是要输入-CSDN博客...

e2studio开发RA4M2(6)----GPIO外部中断(IRQ)配置

e2studio开发RA4M2.6--GPIO外部中断(IRQ)配置 概述视频教学样品申请硬件准备参考程序源码下载新建工程工程模板保存工程路径芯片配置工程模板选择时钟设置SWD调试口设置GPIO口配置按键中断配置中断回调函数主程序 概述 GPIO(通用输入/输出&a…...

DeepSeek 阐述 2025年前端发展趋势

预测2025年前端的发展趋势。首先,我需要考虑当前的前端 技术发展情况,以及近几年的变化趋势。比如,框架方面,React、Vue、Angular这些主流框架的更新方向和社区活跃度。可能用户想知道未来哪些技术会更流行,或者需要学…...

linux内核源代码中__init的作用?

在 Linux 内核源代码中,__init是一个特殊的宏,用于标记在内核初始化阶段使用的变量或函数。这个宏的作用是告诉内核编译器和链接器,被标记的变量或函数只在内核的初始化阶段使用,在系统启动完成后就不再需要了。因此,这…...

计算机从何而来?计算技术将向何处发展?

计算机的前生:机械计算工具的演进 算盘是计算机的起点,它其实是一台“机械式半自动化运算器”。打算盘的“口诀”其实就是它的编程语言,算盘珠就是它的存储器。 第二阶段是可以做四则运算的加法器、乘法器。1642年,法国数学家帕斯…...

浏览器的通信能力

浏览器的通信能力 用户代理 浏览器可以代替用户完成http请求,代替用户解析响应结果,所以我们称之为: 用户代理 user agent 在网络层面,对于前端开发者,必须要知道浏览器拥有的两大核心能力: 自动发出请…...

11. 9 构建生产级聊天对话记忆系统:从架构设计到性能优化的全链路指南

构建生产级聊天对话记忆系统:从架构设计到性能优化的全链路指南 关键词: 聊天对话记忆系统、多用户会话管理、LangChain生产部署、Redis记忆存储、高并发对话系统 一、服务级聊天记忆系统核心需求 多用户隔离:支持同时处理数千个独立对话持久化存储:对话历史不因服务重启丢…...

25.02.04 《CLR via C#》 笔记14

第二十一章 托管堆和垃圾回收 内存分配过程 CLR维护一个“下一次分配指针”(NextObjPtr),指向当前托管堆中第一个可用的内存地址 计算类型所需的字节数,加上对象开销(类型对象指针、同步块索引)所需字节数…...

半导体器件与物理篇5 mosfet及相关器件

认识mos二极管 MOS二极管是研究半导体表面特性最有用的器件之一。MOS二极管可作为存储电容器,并且是电荷耦合器件(CCD)的基本结构单元。 MOS二极管结构的重要参数包括:氧化层厚度d;施加于金属平板上的电压V(正偏压时V为正&#x…...

Hugging Face GGUF 模型可视化

Hugging Face GGUF 模型可视化 1. Finding GGUF files (检索 GGUF 模型)2. Viewer for metadata & tensors info (可视化 GGUF 模型)References 无知小儿,仙家雄霸天下,依附强者才是唯一的出路。否则天地虽大,也让你们无路可走&#xff0…...

PVE纵览-掌握 PVE USB 直通:让虚拟机与物理设备无缝连接

PVE纵览-掌握 PVE USB 直通:让虚拟机与物理设备无缝连接 文章目录 PVE纵览-掌握 PVE USB 直通:让虚拟机与物理设备无缝连接摘要前提条件步骤一:识别 USB 设备步骤二:编辑虚拟机配置步骤三:重启虚拟机注意事项其他配置选…...

关于系统重构实践的一些思考与总结

文章目录 一、前言二、系统重构的范式1.明确目标和背景2.兼容屏蔽对上层的影响3.设计灰度迁移方案3.1 灰度策略3.2 灰度过程设计3.2.1 case1 业务逻辑变更3.2.2 case2 底层数据变更(数据平滑迁移)3.2.3 case3 在途新旧流程兼容3.2.4 case4 接口变更3.2.5…...

DeepSeek:智能时代的AI利器及其应用前景

1.DeepSeek是什么? DeepSeek是一款基于人工智能技术的工具,旨在帮助用户高效处理和分析数据、生成内容、优化工作流程等。无论是数据分析、自然语言处理,还是自动化任务,DeepSeek都能提供强大的支持。其核心技术涵盖了机器学习、深…...

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程 引言 在游戏开发领域,第一人称射击(FPS)游戏一直是最受欢迎的类型之一。从经典的《反恐精英》(CS)到现代的《使命召唤》(Call of Duty),FPS游戏凭借其紧张刺激的游戏体验和高度沉浸感,吸引了无数玩家。如果你是一…...

电商项目高级篇09-检索服务

电商项目高级篇09-检索服务 1、环境搭建1.1、前端静态文件准备1.2、search服务引入模版引擎1.3、index.html页面复制到templates文件夹下1.4、模仿product项目,引入名称空间1.5、动静分离,静态资源路径位置替换1.6、将1.1的静态资源放到nginx目录下1.7、…...

【网络协议大花园】应用层 http协议的使用小技巧,用好了都不用加班,效率翻两倍(下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…...

5 前端系统开发:Vue2、Vue3框架(中):Vue前端工程化组件式开发

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言五、前端工程化(使用Vue创建一个完整的企业级前端项目)1 Vue脚手架(Vue-cli)环境准备(1)…...

【Leetcode刷题记录】1456. 定长子串中元音的最大数目---定长滑动窗口即解题思路总结

1456. 定长子串中元音的最大数目 给你字符串 s 和整数 k 。请返回字符串 s 中长度为 k 的单个子字符串中可能包含的最大元音字母数。 英文中的 元音字母 为(a, e, i, o, u)。 这道题的暴力求解的思路是通过遍历字符串 s 的每一个长度为 k 的子串&#xf…...

Rust中使用ORM框架diesel报错问题

1 起初环境没有问题:在Rust开发的时候起初使用的是mingw64平台加stable-x86_64-pc-windows-gnu编译链,当使用到diesel时会报错,如下: x86_64-w64-mingw32/bin/ld.exe: cannot find -lmysql具体信息很长这是主要信息是rust找不到链…...

Java 数据库连接池:HikariCP 与 Druid 的对比

Java 数据库连接池:HikariCP 与 Druid 的对比 数据库连接池:HikariCP 1. 卓越的性能表现 HikariCP 在数据库连接池领域以其卓越的性能脱颖而出。 其字节码经过精心优化,减少了不必要的开销,使得连接获取和释放的速度极快。 在…...

04树 + 堆 + 优先队列 + 图(D1_树(D7_B+树(B+)))

目录 一、基本介绍 二、重要概念 非叶节点 叶节点 三、阶数 四、基本操作 等值查询(query) 范围查询(rangeQuery) 更新(update) 插入(insert) 删除(remove) 五、知识小结 一、基本介绍 B树是一种树数据结构,通常用于数据库和操作系统的文件系统中。 B树…...

MATLAB实现单层竞争神经网络数据分类

一.单层竞争神经网络介绍 单层竞争神经网络(Single-Layer Competitive Neural Network)是一种基于竞争学习的神经网络模型,主要用于数据分类和模式识别。其核心思想是通过神经元之间的竞争机制,使得网络能够自动学习输入数据的特…...