当前位置: 首页 > news >正文

[AAAI 2023] Oral : Zero-shot 零样本/ Few-shot 少样本收录论文集合

零样本 (7篇):

CALIP: Zero-Shot Enhancement of CLIP with Parameter-free Attention
Guo Ziyu; Zhang Renrui; Qiu Longtian; ma Xianzheng; Miao Xupeng; He Xuming; Cui Bin

Maximum Entropy Population-Based Training for Zero-Shot Human-AI Coordination
Zhao Rui; song jinming; Yuan Yufeng; Hu Haifeng; Gao Yang; Wu Yi; Sun Zhongqian; Yang Wei

Zero-shot Slot Filling with Slot-Prefix Prompting and Attention Relationship Descriptor
Luo Qiaoyang; Liu Lingqiao

Doodle to Object: Practical Zero-Shot Sketch-Based 3D Shape Retrieval
Wang Bingrui; Zhou Yuan

DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning
Chen Zhuo; Huang Yufeng; Chen Jiaoyan; Geng Yuxia; Zhang Wen; Fang Yin; Z. Pan Jeff; Chen Huajun

Zero-Shot Cross-Lingual Event Argument Extraction with Language-Oriented Prefix-Tuning
Cao Pengfei; Jin Zhuoran; Chen Yubo; Liu Kang; Zhao Jun

Dream to Generalize: Zero-Shot Model-Based Reinforcement Learning for Unseen Visual Distractions
Ha Jeongsoo; Kim Kyungsoo; Kim Yusung

少样本 (14篇):

Prompt-Augmented Linear Probing: Scaling Beyond The Limit of Few-shot In-Context Learners
Cho Hyunsoo; Kim Hyuhng Joon; Kim Junyeob; Yoo Kang Min; Lee Sang-Woo; Lee Sang-goo; Kim Taeuk

Cross-domain Few-shot Graph Classification with a Reinforced Task Coordinator
Zhang Qiannan; Pei Shichao; Yang Qiang; Zhang Chuxu; Chawla Nitesh; Zhang Xiangliang

FEditNet: Few-shot Editing of Latent Semantics in GAN Spaces
Xia Mengfei; Shu Yezhi; Wang Yuji; Lai Yu-Kun; Li Qiang; Wan Pengfei ; Wang Zhongyuan; Liu Yong-Jin

Exploring Tuning Characteristics of Ventral Stream's Neurons for Few-Shot Image Classification
Dong Lintao; Zhai Wei; Zha Zheng-Jun

Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot Image Classification
Wu Jijie; Chang Dongliang; Sain Aneeshan; Li Xiaoxu; Ma Zhanyu; Cao Jie; Guo Jun; Song Yi-Zhe

Few-Shot Object Detection via Variational Feature Aggregation
Han Jiaming; Ren Yuqiang; Ding Jian; Yan Ke; Xia Gui-Song

Progressive Few-shot Adaption of Generative Model with Align-free Spatial Correlation
Moon Jongbo; Kim Hyunjun; Heo Jae-Pil

Few-Shot Composition Learning for Image Retrieval with Prompt Tuning
Wu Junda; Wang Rui; Zhao Handong; Zhang Ruiyi; Lu Chaochao; Li Shuai; Henao Ricardo

Better Generalized Few-Shot Learning Even Without Base
Kim Seong-Woong; Choi Dong-Wan

Few-Shot Defect Image Generation via Defect-Aware Feature Manipulation
Duan Yuxuan; Hong Yan; Niu Li; Zhang Liqing

Supervised Contrastive Few-shot Learning for High-frequency Time Series
Chen Xi; ge cheng; Wang Ming; Wang Jin

Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt
Yang zhichao; Kwon Sunjae; Yao Zonghai; Yu Hong

ESPT: A Self-Supervised Episodic Spatial Pretext Task for Improving Few-Shot Learning
Rong Yi; Lu Xiongbo; Sun Zhaoyang; Chen Yaxiong; Xiong Shengwu

Neighborhood-Regularized Self-Training for Learning with Few Labels
Xu Ran; Yu Yue; Cui Hejie; Kan Xuan; ZHU Yanqiao; Ho Joyce; Zhang Chao; Yang Carl

Feature Distribution Fitting with Direction-Driven Weighting for Few-shot Images Classification
Wei Xin; Du Wei; Wan Huan; Min Weidong

相关文章:

[AAAI 2023] Oral : Zero-shot 零样本/ Few-shot 少样本收录论文集合

零样本 (7篇): CALIP: Zero-Shot Enhancement of CLIP with Parameter-free AttentionGuo Ziyu; Zhang Renrui; Qiu Longtian; ma Xianzheng; Miao Xupeng; He Xuming; Cui BinMaximum Entropy Population-Based Training for Zero-Shot Human-AI CoordinationZhao …...

驱动开发 2.13

设备树 设备树就是一种描述硬件信息的树形结构,设备树上有很多设备节点,每一个设备节点都描述了一个硬件设备信息,设备节点中也可以再包含子设备节点和设备属性,同一个节点的不同属性是以链表结构存储,设备树有.dts设…...

【数据库】sql函数和多表关联查询

目录 一,SQL函数 1,聚合函数 1, count函数 2, AVG函数 3, SUM函数 4, MAX函数 5, MIN函数 6,数据分组——GROUP BY 7,限定组的结果,HAVING 8&#x…...

6-周赛332总结

6-周赛332总结 过了Q1和Q2,Q2知道用二分但是边界处理的不是很好,迷迷糊糊过的(手动再移动了下返回值…) Q3知道将子字符串的值取出来,将最短位置放在哈希表中,然后异或在哈希表中找值。但是我这个猪头脑袋…...

嵌入式Qt 开发一个音乐播放器

上篇文章:RK3568源码编译与交叉编译环境搭建,进行了OK3568开发板软件开发环境搭建,通过编译RK3568的源码,可以得到Qt开发的交叉编译相关工具。 本篇,就来在搭建好的软件开发中,进行Qt软件的开发测试。由于…...

2023秋招万得集团AI算法岗面经分享

本专栏分享 计算机小伙伴秋招春招找工作的面试经验和面试的详情知识点 专栏首页:秋招算法类面经分享 主要分享计算机算法类在面试互联网公司时候一些真实的经验 2022年 11.22下午AI算法岗面试 (1)一面35min 1、自我介绍 2、科研:长文本MRC...

RoI Transformer论文翻译详解

Learning RoI Transformer for Oriented Object Detection in Aerial Images 0.摘要 航空图像中的目标检测是计算机视觉中一个活跃而又具有挑战性的任务,因为它具有鸟瞰视角、高度复杂的背景和变化的物体外观。特别是在航空图像中检测密集的目标时,基于…...

Prometheus 自动发现监控AWS EC2实例

本文章简述对接自动发现AWS云EC2实例 前提环境: PromethuesGrafanaAWS IAM权限 涉及参考文档: AWS EC2Grafana 通用监控模板 一、IAM 用户创建 1、创建Prometheus 策略 策略规则: {"Version": "2012-10-17",&quo…...

从recat源码角度看setState流程

setState setState() 将对组件 state 的更改排入队列批量推迟更新,并通知 React 需要使用更新后的 state 重新渲染此组件及其子组件。其实setState实际上不是异步,只是代码执行顺序不同,有了异步的感觉。 使用方法 setState(stateChange | u…...

【Java|golang】1234. 替换子串得到平衡字符串---双指针

有一个只含有 ‘Q’, ‘W’, ‘E’, ‘R’ 四种字符,且长度为 n 的字符串。 假如在该字符串中,这四个字符都恰好出现 n/4 次,那么它就是一个「平衡字符串」。 给你一个这样的字符串 s,请通过「替换一个子串」的方式,…...

自监督表征学习方法——BYOL(Bootstrap Your Own Latent)

自监督表征学习方法——BYOL(Bootstrap Your Own Latent) 参考文献:《Bootstrap Your Own Latent A New Approach to Self-Supervised Learning》 1.前言背景 学习良好的图像表示是计算机视觉中的一个关键挑战,因为它允许对下游任务进行有效的训练。许…...

均衡负载集群(LBC)-1

均衡负载集群(LBC) 客户–>通过Internet—>负载调度器—>n台真实服务器 负载调度器: 软件:LVS;Nginx;Haproxy硬件:F5; LVS架构: 使用到C/S(B/S…...

WebSocket

关于WebSocket: WebSocket 协议在2008年诞生,2011年成为国际标准。现在所有浏览器都已经支持了。 WebSocket 的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话…...

GA-PEG-GA,Glutaric Acid-PEG-Glutaric Acid,戊二酸-聚乙二醇-戊二酸供应

英文名称:Glutaric Acid-PEG-Glutaric Acid,GA-PEG-GA 中文名称:戊二酸-聚乙二醇-戊二酸 GA-PEG-GA是一种线性双功能PEG羧酸试剂。PEG和羧基COOH之间存在C4酯键。PEG羧酸可用于与氨基反应,与NHS和DCC、EDC等肽偶联试剂反应。 P…...

使用sqlmap + burpsuite sql工具注入拿flag

使用sqlmap burpsuite sql工具注入拿flag 记录一下自己重新开始学习web安全之路③。 目标网站:http://mashang.eicp.vip:1651/7WOY59OBj74nTwKzs3aftsh1MDELK2cG/ 首先判断网站是否存在SQL注入漏洞 1.找交互点 发现只有url这一个交互点,搜索框和登录…...

替代AG9300|替代NCS8823|CS5260 Type-C转VGA视频转换方案

替代AG9300|替代NCS8823|CS5260 Type-C转VGA视频转换方案 CS5260是一款是一款实现USB TYPE-C到VGA视频转换的单片机解决方案转换器。CS5260支持USB Type-C显示端口交替模式,CS5260可以将视频和音频流从USB Type-C接口传输到VGA端口。在CS5260芯片中,显示…...

乐鑫特权隔离机制的 OTA 固件升级

固件空中升级 (OTA, Over-The-Air) 是任何联网设备的重要功能之一,支持开发人员通过远程更新固件,以发布新功能或修复错误。乐鑫特权隔离框架中包含两类应用程序:受保护的应用程序 (protected_app) 和用户应用程序 (user_app) ,这…...

C++数据结构 —— 二叉搜索树

目录 1.二叉搜索树的基本概念 1.1二叉搜索树的基本特征 2.二叉搜索树的实现 2.1数据的插入(迭代实现) 2.2数据的搜索(迭代实现) 2.3中序遍历(递归实现) 2.4数据的删除(迭代实现) 2.5数据的搜索(递归实现) 2.6数据的插入(递归实现) 2.7数据的删除(递归实现) 2.8类的完…...

Maven面试题及答案

1、Maven有哪些优点和缺点 优点: 1、简化项目依赖管理 2、方便与持续集成工具(Jenkins)整合 3、有助于多模块项目开发,比如一个模块开发好后发布到仓库,依赖该模块时可以直接从远程仓库更新,不用自己手动去编译 4、有很多插件&am…...

WebRTC系列-Qos系列之接收放RTX处理

文章目录 1. RTX详解1.1 RTX包头解析1.2 RTX包中的OSN2. RTX在WebRTC中处理2.1 组包2.2 解包2.3 发送及接收处理流程2.3.1 发送流程2.3.2 rtx标记的设置流程2.3.3 解析流程2.3.4 RTX解包在上一篇 WebRTC系列-Qos系列之接收NACK文章中分析了接收到nack后解析的主要流程。在WebR…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​:Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...