当前位置: 首页 > news >正文

STM32---FreeRTOS消息队列

一、简介

1、队列简介:

队列:是任务到任务,任务到中断、中断到任务数据交流的一种机制(消息传递)。

 FreeRTOS基于队列,实现了多种功能,其中包括队列集、互斥信号量、计数型信号量、二值信号量、递归互斥信号量,因此很有必要深入了解FreeRTOS的队列。

(中断一关闭,就不会出现任务切换,以防多个任务同时操作队列) 

2、FreeRTOS队列特点:

                        1.数据入队出队方式:先进先出

                        2.数据传递方式:实际值

                        3.多任务访问

                        4. 出队、入队堵塞

问题:当多个任务写入消息给一个“满队列”时,这些任务都会进入阻塞状态,也就是说有多个任务      在等待同一 个队列的空间。那当队列中有空间时,哪个任务会进入就绪态? 

答:     1、优先级最高的任务     2、如果大家的优先级相同,那等待时间最久的任务会进入就绪态 

注:我始终认为自己不是一个很聪明的人,所以这些理论知识,我都是浅尝辄止,量力而行。

3、往队列写入消息API函数 :

4、从队列读取消息API函数: 

 二、实验

1、实验步骤

2、代码: 

main.c

#include "stm32f10x.h"
#include "FreeRTOS.h"
#include "task.h"
#include "freertos_demo.h"
#include "Delay.h"
#include "sys.h"
#include "usart.h"
#include "LED.h"
#include "Key.h"int main(void){	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);//设置系统中断优先级分组 4 uart_init(115200);	 delay_init();Key_Init();LED_Init();// 创建任务FrrrRTOS_Demo();}

freertos_demo.c 

#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "LED.h"
#include "Key.h"
#include "usart.h"
#include "delay.h"/******************************************************************任务配置****************************************************/
//任务优先级
#define START_TASK_PRIO					1
//任务堆栈大小	
#define START_TASK_STACK_SIZE 	128  
//任务句柄
TaskHandle_t StartTask_Handler;
//任务函数
void start_task(void *pvParameters);//任务优先级
#define TASK1_PRIO							2
//任务堆栈大小	
#define TASK1_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task1_Handler;
//任务函数
void task1(void *pvParameters);//任务优先级
#define TASK2_PRIO							3
//任务堆栈大小	
#define TASK2_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task2_Handler;
//任务函数
void task2(void *pvParameters);//任务优先级
#define TASK3_PRIO							4
//任务堆栈大小	
#define TASK3_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task3_Handler;
//任务函数
void task3(void *pvParameters);char  task_buffer[500]; 							//用于存储系统中任务信息表格/******************************************************************任务函数****************************************************/
QueueHandle_t		key_queue; 						//小数据句柄
QueueHandle_t		big_data_queue; 			//大数据	句柄
char buff[100] = {"苍天已死,黄天当立;岁在甲子,天下大吉"};
void FrrrRTOS_Demo(void)
{key_queue = xQueueCreate(2, sizeof(uint8_t));if(key_queue != NULL){printf("\r\nkey_queue队列创建成功!!!\r\n");}else{ printf("key_queue队列创建失败!!!\r\n");	}big_data_queue = xQueueCreate(1, sizeof(char *));if(big_data_queue != NULL){printf("big_data_queue队列创建成功!!!\r\n");}else{ printf("big_data_queue队列创建失败!!!\r\n");	}//创建开始任务xTaskCreate((TaskFunction_t )start_task,            			//任务函数( char*         )"start_task",          			//任务名称(uint16_t       )START_TASK_STACK_SIZE, 			//任务堆栈大小(void*          )NULL,                  			//传递给任务函数的参数(UBaseType_t    )START_TASK_PRIO,       			//任务优先级(TaskHandle_t*  )&StartTask_Handler);   			//任务句柄 // 启动任务调度vTaskStartScheduler();}void start_task(void *pvParameters)
{taskENTER_CRITICAL();           //进入临界区//创建1任务xTaskCreate((TaskFunction_t )task1,     	(const char*    )"task1",   	(uint16_t       )TASK1_STACK_SIZE, (void*          )NULL,				(UBaseType_t    )TASK1_PRIO,	(TaskHandle_t*  )&Task1_Handler); //创建2任务xTaskCreate((TaskFunction_t )task2,     (const char*    )"task2",   (uint16_t       )TASK2_STACK_SIZE, (void*          )NULL,(UBaseType_t    )TASK2_PRIO,(TaskHandle_t*  )&Task2_Handler);    //创建3任务xTaskCreate((TaskFunction_t )task3,     (const char*    )"task3",   (uint16_t       )TASK3_STACK_SIZE, (void*          )NULL,(UBaseType_t    )TASK3_PRIO,(TaskHandle_t*  )&Task3_Handler);  								vTaskDelete(NULL); 							//删除开始任务taskEXIT_CRITICAL();            //退出临界区
}//1 任务函数
void task1(void *pvParameters)
{uint8_t 	 key = 0;BaseType_t err;char *buf;buf = &buff[0];while(1){key = Key_GetNum();if(key == 1 || key == 2){err = xQueueSend( key_queue, &key, portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列发送失败\r\n");}}else if(key == 3){err = xQueueSend( big_data_queue, &buf, portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列发送失败\r\n");}}vTaskDelay(50);}
}// 任务2 小数据出队函数
void task2(void *pvParameters)
{uint8_t    key = 0;BaseType_t err = 0;// 任务主循环while (1){err = xQueueReceive( key_queue,&key,portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列读取失败\r\n");		}else{printf("key = %d\r\n",key);};}
}//不调用系统延时函数,因为xQueueReceive()函数如果读取完队列里面的数据,就会由就绪态转变为阻塞态;// 任务3 大数据出队函数
void task3(void *pvParameters)
{	char *    buf;BaseType_t err = 0;// 任务主循环while (1){err = xQueueReceive( big_data_queue, &buf, portMAX_DELAY);if(err != pdTRUE){printf("big_data_queue队列读取失败\r\n");		}else{printf("key = %s\r\n",buf);};}
}

 key.c

#include "stm32f10x.h"                  // Device header
#include "FreeRTOS.h"
#include "task.h"
#include "usart.h"
#include "Delay.h"/*** 函    数:按键初始化* 参    数:无* 返 回 值:无* 按键:PB4/PB12/PB14*/
void Key_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟/*GPIO初始化*/GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_4 | GPIO_Pin_12 | GPIO_Pin_14;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);					}/*** 函    数:按键获取键码* 参    数:无* 返 回 值:按下按键的键码值,范围:0~3,返回0代表没有按键按下* 注意事项:此函数是阻塞式操作,当按键按住不放时,函数会卡住,直到按键松手*/
uint8_t Key_GetNum(void)
{uint8_t KeyNum = 0;																				//定义变量,默认键码值为0if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0)			  //读PB4输入寄存器的状态,如果为0,则代表按键1按下{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);																					//延时消抖while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0);	//等待按键松手delay_xms(20);																					//延时消抖KeyNum = 1;																							//置键码为1}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0)			{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);											while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0);	delay_xms(20);									KeyNum = 2;											}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0)			{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);											while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0);	delay_xms(20);									KeyNum = 3;											}return KeyNum;																						//返回键码值,如果没有按键按下,所有if都不成立,则键码为默认值0
}

 3、实验结果解析

开始运行:

按下按键1(PB4):

按下按键1,就会往队列key_queue里面写入key值(1),然后任务切换到task2将队列key_queue里面的数据读取出来;;

按下按键2(PB12):

按下按键2,就会往队列key_queue里面写入key值(2),然后任务切换到task2将队列key_queue里面的数据读取出来;

按下按键3(PB14) :

按下按键2,就会往队列big_data_queue里面写入key值(3),然后任务切换到task3将队列big_data_queue里面的数据读取出来;

三、重点 

使用队列相关函数时需要将下面宏置1(默认是1):

    #define configSUPPORT_DYNAMIC_ALLOCATION    1

 队列创建函数:

xQueueCreate( uxQueueLength, uxItemSize ) ;               //uxQueueLength:队列长度;uxItemSize 队列参数的大小

队列写入消息函数:

xQueueSend( xQueue, pvItemToQueue, xTicksToWait );        //xQueue:待写入的队列;pvItemToQueue:待写入的消息;xTicksToWait:阻塞超时时间

队列读取消息函数:

xQueueReceive( QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait ) ;          //xQueue:待读取的队列;pvBuffer:信息读取缓冲区;xTicksToWait:阻塞超时时间

问题:任务2(task2)和任务3(task3)没有系统延时函数(xTaskDelay()),按优先级来说应该一直执行任务3(task3),复位后却先执行了任务1(task1)?

答:因为xQueueReceive()和xQueueSend()函数,如果读取完或写入完队列里面的数据,自动会使任务由就绪态转变为阻塞态,知道队列里面有数据可以写入或者读出;

相关文章:

STM32---FreeRTOS消息队列

一、简介 1、队列简介: 队列:是任务到任务,任务到中断、中断到任务数据交流的一种机制(消息传递)。 FreeRTOS基于队列,实现了多种功能,其中包括队列集、互斥信号量、计数型信号量、二值信号量…...

开关模式电源转换器 EMI/EMC 的集成仿真

介绍 在电力电子领域,电磁干扰 (EMI) 和电磁兼容性 (EMC) 问题可以决定设计的成败。开关模式电源转换器虽然高效且紧凑,但却是电磁噪声的常见来源,可能会对附近的组件和系统造成严重破坏。随着…...

Java虚拟机之垃圾收集(一)

目录 一、如何判定对象“生死”? 1. 引用计数算法(理论参考) 2. 可达性分析算法(JVM 实际使用) 3. 对象的“缓刑”机制 二、引用类型与回收策略 三、何时触发垃圾回收? 1. 分代回收策略 2. 手动触发…...

linux---天气爬虫

代码概述 这段代码实现了一个天气查询系统,支持实时天气、未来天气和历史天气查询。用户可以通过终端菜单选择查询类型,并输入城市名称来获取相应的天气信息。程序通过 TCP 连接发送 HTTP 请求,并解析返回的 JSON 数据来展示天气信息。 #in…...

字节顺序(大小端序)

在弄明白字节顺序之前先了解一下一些基础概念. 基础概念 字节(byte)‌: 字节是计算机中数据处理的基本单位,通常由8个位组成,即1字节等于8位。一个字节可以存储一个ASCII码,两个字节可以存放一个汉字国标…...

可复用的 Vue 轮播图组件

大家好,今天我想和大家分享一下如何开发一个通用的 Vue 轮播图组件。轮播图在各种网站中都很常见,无论是展示产品、活动还是文章,都能派上用场。我们今天要实现的这个组件会具备良好的可配置性和易用性,同时保证代码的可维护性。 …...

AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异

背景 字节跳动正式发布中国首个AI原生集成开发环境工具(AI IDE)——AI编程工具Trae国内版。 该工具模型搭载doubao-1.5-pro,支持切换满血版DeepSeek R1&V3, 可以帮助各阶段开发者与AI流畅协作,更快、更高质量地完…...

Linux红帽:RHCSA认证知识讲解(五)从红帽和 DNF 软件仓库下载、安装、更新和管理软件包

Linux红帽:RHCSA认证知识讲解(五)从红帽和 DNF 软件仓库下载、安装、更新和管理软件包 前言一、DNF 软件包管理基础1.1 核心操作命令安装软件包卸载软件包重新安装软件包 1.2 软件仓库原理 二、配置自定义软件仓库步骤 1:清理默认…...

云上特权凭证攻防启示录:从根账号AK泄露到安全体系升级的深度实践

事件全景:一场持续17分钟的云上攻防战 2025年3月9日15:39,阿里云ActionTrail日志突现异常波纹——根账号acs:ram::123456789:root(已脱敏)从立陶宛IP(164.92.91.227)发起高危操作。攻击者利用泄露的AccessKey(AK)在17分钟内完成侦察→提权→持久化攻击链,完整操作序列…...

从3b1b到课堂:教育3D化的理想与现实鸿沟

从3b1b到课堂:教育3D化的理想与现实鸿沟 3Blue1Brown(3b1b)凭借精妙的三维动画与直观的知识可视化,重新定义了数学教育的可能性。然而,当前教育实践中,3D技术的渗透仍显不足,多数课堂停留在平面…...

FPGA入门教程

引言 FPGA(Field-Programmable Gate Array,现场可编程门阵列)是一种灵活且强大的硬件设备,广泛应用于数字电路设计、信号处理、嵌入式系统等领域。与传统的ASIC(专用集成电路)不同,FPGA允许用户…...

Liunx系统 : 进程间通信【IPC-Shm共享内存】

文章目录 System V共享内存创建共享内存shmget 控制共享内存shmctl shm特性 System V System V是Liunx中的重要的进程间通信机制,它包括(shm)共享内存,(msg)消息队列和(sem)信号量。…...

KafkaRocketMQ

Kafka 消息生产与消费流程 1. 消息生产 生产者创建消息: 指定目标 Topic、Key(可选)、Value。可附加 Header 信息(如时间戳、自定义元数据)。 选择分区(Partition): 若指定 Key&am…...

HarmonyOS Next 中的状态管理

在声明式UI编程框架中,UI是程序状态的运行结果,用户构建了一个UI模型,其中应用的运行时的状态是参数。当参数改变时,UI作为返回结果,也将进行对应的改变。这些运行时的状态变化所带来的UI的重新渲染,在ArkU…...

基于qiime2的16S数据分析全流程:从导入数据到下游分析一条龙

目录 创建metadata 把数据导入qiime2 去除引物序列 双端合并 (dada2不需要) 质控 (dada2不需要) 使用deblur获得特征序列 使用dada2生成代表序列与特征表 物种鉴定 可视化物种鉴定结果 构建进化树(ITS一般不构建进化树…...

【软件测试开发】:软件测试常用函数1.0(C++)

1. 元素的定位 web⾃动化测试的操作核⼼是能够找到⻚⾯对应的元素,然后才能对元素进⾏具体的操作。 常⻅的元素定位⽅式⾮常多,如id,classname,tagname,xpath,cssSelector 常⽤的主要由cssSelector和xpath…...

vue2项目修改浏览器显示的网页图标

1.准备一个新的图标文件,通常是. ico格式,也可以是. Png、. Svg等格式 2.将新的图标文件(例如:faviconAt.png)放入项目的public文件夹中。如下图 public文件夹中的所有文件都会在构建时原样复制到最终的输出目录(通常是dist) 3. 修改vue项目…...

开源、创新与人才发展:机器人产业的战略布局与稚晖君成功案例解析

目录 引言 一、开源:机器人产业的战略布局 促进技术进步和生态建设 吸引人才和合作伙伴 建立标准和网络效应 降低研发风险与成本 二、稚晖君:华为"天才少年计划"的成功典范 深厚的技术积累与动手能力 强烈的探索和创新意识 持续公开…...

线程相关作业

1.创建两个线程,分支线程1拷贝文件的前一部分,分支线程2拷贝文件的后一部分 #include "head.h"#define BUFFER_SIZE 1024// 线程参数结构体,包含文件名和文件偏移量 typedef struct {FILE *src_file;FILE *dest_file;long start_o…...

通义万相2.1开源版本地化部署攻略,生成视频再填利器

2025 年 2 月 25 日晚上 11:00 通义万相 2.1 开源发布,前两周太忙没空搞它,这个周末,也来本地化部署一个,体验生成效果如何,总的来说,它在国内文生视频、图生视频的行列处于领先位置&#xff0c…...

【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真(基于运放的电流模BGR)

【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真 前言工程文件&部分参数计算过程,私聊~ 一、 设计指标指标分析: 二、 电路分析三、 仿真3.1仿真电路图3.2仿真结果(1)运放增益(2)基准温度系数仿真(3)瞬态启动仿真(4)静态…...

如何选择国产串口屏?

目录 1、迪文 2、淘晶驰 3、广州大彩 4、金玺智控 5、欣瑞达 6、富莱新 7、冠显 8、有彩 串口屏,顾名思义,就是通过串口通信接口(如RS232、RS485、TTL UART等)与主控设备进行通信的显示屏。其核心功能是显示信息和接收输入…...

Solana中的程序派生地址(PDAs):是什么,为什么,以及如何?

程序派生地址 (PDA) 在 Solana 中的应用:什么、为什么和如何? 在学习 Solana 时,你会经常听到关于 程序派生地址 (PDAs) 的讨论。它们就像这样 —— 强大、多功能,而且最重要的是,稍微被误解。如果你是一个开发者&…...

利用FatJar彻底解决Jar包冲突(一)

利用FatJar彻底解决Jar包冲突 序FatJar的加载与隔离⼀、 FatJar概念⼆、FatJar的加载三、FatJar的隔离四、隔离机制验证五、 FatJar的定位六、 打包注意点 序 今天整理旧电脑里的资料,偶然翻到大概10年前实习时写的笔记,之前经常遇到Java依赖冲突的问题…...

Spring MVC笔记

01 什么是Spring MVC Spring MVC 是 Spring 框架中的一个核心模块,专门用于构建 Web 应用程序。它基于经典的 MVC 设计模式(Model-View-Controller),但通过 Spring 的特性(如依赖注入、注解驱动)大幅简化了…...

BurpSuite插件jsEncrypter使用教程

一、前言 在当今Web应用安全测试中,前端加密已成为开发者保护敏感数据的常用手段。然而,这也给安全测试人员带来了挑战,传统的抓包方式难以获取明文数据,测试效率大打折扣。BurpSuite作为一款强大的Web安全测试工具,其…...

【C#实现手写Ollama服务交互,实现本地模型对话】

前言 C#手写Ollama服务交互,实现本地模型对话 最近使用C#调用OllamaSharpe库实现Ollama本地对话,然后思考着能否自己实现这个功能。经过一番查找,和查看OllamaSharpe源码发现确实可以。其实就是开启Ollama服务后,发送HTTP请求&a…...

Android Glide 框架线程管理模块原理的源码级别深入分析

一、引言 在现代的 Android 应用开发中,图片加载是一个常见且重要的功能。Glide 作为一款广泛使用的图片加载框架,以其高效、灵活和易用的特点受到了开发者的青睐。其中,线程管理模块是 Glide 框架中至关重要的一部分,它负责协调…...

每天记录一道Java面试题---day32

MySQL索引的数据结构、各自优劣 回答重点 B树:是一个平衡的多叉树,从根节点到每个叶子节点的高度差不超过1,而且同层级的节点间有指针相互连接。在B树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大…...

Vue3 Pinia 符合直觉的Vue.js状态管理库

Pinia 符合直觉的Vue.js状态管理库 什么时候使用Pinia 当两个关系非常远的组件,要传递参数时使用Pinia组件的公共参数使用Pinia...