当前位置: 首页 > news >正文

Python 数据可视化的 3 大步骤,你知道吗?

Python实现可视化的三个步骤:

  • 确定问题,选择图形
  • 转换数据,应用函数
  • 参数设置,一目了然

1、首先,要知道我们用哪些库来画图?

matplotlib

Python中最基本的作图库就是matplotlib,是一个最基础的Python可视化库,一般都是从matplotlib上手Python数据可视化,然后开始做纵向与横向拓展。

Seaborn

是一个基于matplotlib的高级可视化效果库,针对的点主要是数据挖掘和机器学习中的变量特征选取,seaborn可以用短小的代码去绘制描述更多维度数据的可视化效果图

其他库还包括

Bokeh(是一个用于做浏览器端交互可视化的库,实现分析师与数据的交互);Mapbox(处理地理数据引擎更强的可视化工具库)等等

本篇文章主要使用matplotlib进行案例分析

第一步:确定问题,选择图形

业务可能很复杂,但是经过拆分,我们要找到我们想通过图形表达什么具体问题。分析思维的训练可以学习《麦肯锡方法》和《金字塔原理》中的方法。

这是网上的一张关于图表类型选择的总结。

图片

在Python中,我们可以总结为以下四种基本视觉元素来展现图形:

  • :scatter plot 二维数据,适用于简单二维关系;
  • 线:line plot 二维数据,适用于时间序列;
  • 柱状:bar plot 二维数据,适用于类别统计;
  • 颜色:heatmap 适用于展示第三维度;

数据间存在分布,构成,比较,联系以及变化趋势等关系。对应不一样的关系,选择相应的图形进行展示。

第二步:转换数据,应用函数

数据分析和建模方面的大量编程工作都是用在数据准备的基础上的:加载、清理、转换以及重塑。我们可视化步骤也需要对数据进行整理,转换成我们需要的格式再套用可视化方法完成作图。

下面是一些常用的数据转换方法:

  • 合并:merge,concat,combine_frist(类似于数据库中的全外连接)
  • 重塑:reshape;轴向旋转:pivot(类似excel数据透视表)
  • 去重:drop_duplicates
  • 映射:map
  • 填充替换:fillna,replace
  • 重命名轴索引:rename

将分类变量转换‘哑变量矩阵’的get_dummies函数以及在df中对某列数据取限定值等等。

函数则根据第一步中选择好的图形,去找Python中对应的函数。

第三步:参数设置,一目了然

原始图形画完后,我们可以根据需求修改颜色(color),线型(linestyle),标记(maker)或者其他图表装饰项标题(Title),轴标签(xlabel,ylabel),轴刻度(set_xticks),还有图例(legend)等,让图形更加直观。

第三步是在第二步的基础上,为了使图形更加清晰明了,做的修饰工作。具体参数都可以在制图函数中找到。

2、可视化作图基础

Matplotlib作图基础

#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Figure和Subplot

matplotlib的图形都位于Figure(画布)中,Subplot创建图像空间。不能通过figure绘图,必须用add_subplot创建一个或多个subplot。

figsize可以指定图像尺寸。

#创建画布
fig = plt.figure()
<Figure size 432x288 with 0 Axes>
#创建subplot,221表示这是2行2列表格中的第1个图像。
ax1 = fig.add_subplot(221)
#但现在更习惯使用以下方法创建画布和图像,2,2表示这是一个2*2的画布,可以放置4个图像
fig , axes = plt.subplots(2,2,sharex=True,sharey=True)
#plt.subplot的sharex和sharey参数可以指定所有的subplot使用相同的x,y轴刻度。

图片

利用Figure的subplots_adjust方法可以调整间距。

subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=None)

图片

颜色color,标记marker,和线型linestyle

matplotlib的plot函数接受一组X和Y坐标,还可以接受一个表示颜色和线型的字符串缩写:‘g–’,表示颜色是绿色green,线型是’–'虚线。也可以使用参数明确的指定。

线型图还可以加上一些标记(marker),来突出显示数据点的位置。标记也可以放在格式字符串中,但标记类型和线型必须放在颜色后面

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
[<matplotlib.lines.Line2D at 0x8c919b0>]

图片

刻度,标签和图例

plt的xlim、xticks和xtickslabels方法分别控制图表的范围和刻度位置和刻度标签

调用方法时不带参数,则返回当前的参数值;调用时带参数,则设置参数值。

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim() #不带参数调用,显示当前参数;
#可将xlim替换为另外两个方法试试
(-1.4500000000000002, 30.45)

图片

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim([0,15]) #横轴刻度变成0-15
(0, 15)

图片

设置标题,轴标签,刻度以及刻度标签

fig = plt.figure();ax = fig.add_subplot(1,1,1)
ax.plot(np.random.randn(1000).cumsum())
ticks = ax.set_xticks([0,250,500,750,1000]) #设置刻度值
labels = ax.set_xticklabels(['one','two','three','four','five']) #设置刻度标签
ax.set_title('My first Plot') #设置标题
ax.set_xlabel('Stage') #设置轴标签
Text(0.5,0,'Stage')

图片

添加图例

图例legend是另一种用于标识图标元素的重要工具。可以在添加subplot的时候传入label参数。

fig = plt.figure(figsize=(12,5));ax = fig.add_subplot(111)
ax.plot(np.random.randn(1000).cumsum(),'k',label='one') #传入label参数,定义label名称
ax.plot(np.random.randn(1000).cumsum(),'k--',label='two')
ax.plot(np.random.randn(1000).cumsum(),'k.',label='three')
#图形创建完后,只需要调用legend参数将label调出来即可。
ax.legend(loc='best') #要求不是很严格的话,建议使用loc=‘best’参数来让它自己选择最佳位置
<matplotlib.legend.Legend at 0xa8f5a20>

图片

注解

除标准的图表对象之外,我们还可以自定义添加一些文字注解或者箭头。

注解可以通过text,arrow和annotate等函数进行添加。text函数可以将文本绘制在指定的x,y坐标位置,还可以进行自定义格式

plt.plot(np.random.randn(1000).cumsum())
plt.text(600,10,'test ',family='monospace',fontsize=10)
#中文注释在默认环境下并不能正常显示,需要修改配置文件,使其支持中文字体。具体步骤请自行搜索。

保存图表到文件

利用plt.savefig可以将当前图表保存到文件。例如,要将图表保存为png文件,可以执行

文件类型是根据拓展名而定的。其他参数还有:

  • fname:含有文件路径的字符串,拓展名指定文件类型
  • dpi:分辨率,默认100 facecolor,edgcolor 图像的背景色,默认‘w’白色
  • format:显示设置文件格式(‘png’,‘pdf’,‘svg’,‘ps’,'jpg’等)
  • bbox_inches:图表需要保留的部分。如果设置为“tight”,则将尝试剪除图像周围的空白部分
plt.savefig('./plot.jpg') #保存图像为plot名称的jpg格式图像
<Figure size 432x288 with 0 Axes>

3、Pandas中的绘图函数

Matplotlib作图

matplotlib是最基础的绘图函数,也是相对较低级的工具。组装一张图表需要单独调用各个基础组件才行。Pandas中有许多基于matplotlib的高级绘图方法,原本需要多行代码才能搞定的图表,使用pandas只需要短短几行。

我们使用的就调用了pandas中的绘图包。

import matplotlib.pyplot as plt

线型图

Series和DataFrame都有一个用于生成各类图表的plot方法。默认情况下,他们生成的是线型图。

s = pd.Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
s.plot() #Series对象的索引index会传给matplotlib用作绘制x轴。
<matplotlib.axes._subplots.AxesSubplot at 0xf553128>

图片

df = pd.DataFrame(np.random.randn(10,4).cumsum(0),columns=['A','B','C','D'])
df.plot() #plot会自动为不同变量改变颜色,并添加图例
<matplotlib.axes._subplots.AxesSubplot at 0xf4f9eb8>

图片

Series.plot方法的参数

  • label:用于图表的标签
  • style:风格字符串,‘g–’
  • alpha:图像的填充不透明度(0-1)
  • kind:图表类型(bar,line,hist,kde等)
  • xticks:设定x轴刻度值
  • yticks:设定y轴刻度值
  • xlim,ylim:设定轴界限,[0,10]
  • grid:显示轴网格线,默认关闭
  • rot:旋转刻度标签
  • use_index:将对象的索引用作刻度标签
  • logy:在Y轴上使用对数标尺

DataFrame.plot方法的参数

DataFrame除了Series中的参数外,还有一些独有的选项。

  • subplots:将各个DataFrame列绘制到单独的subplot中
  • sharex,sharey:共享x,y轴
  • figsize:控制图像大小
  • title:图像标题
  • legend:添加图例,默认显示
  • sort_columns:以字母顺序绘制各列,默认使用当前顺序

柱状图

在生成线型图的代码中加上kind=‘bar’或者kind=‘barh’,可以生成柱状图或水平柱状图。

fig,axes = plt.subplots(2,1)
data = pd.Series(np.random.rand(10),index=list('abcdefghij'))
data.plot(kind='bar',ax=axes[0],rot=0,alpha=0.3)
data.plot(kind='barh',ax=axes[1],grid=True)
<matplotlib.axes._subplots.AxesSubplot at 0xfe39898>

图片

柱状图有一个非常实用的方法:

利用value_counts图形化显示Series或者DF中各值的出现频率。

比如df.value_counts().plot(kind=‘bar’)

Python可视化的基础语法就到这里,其他图形的绘制方法大同小异。

重点是遵循三个步骤的思路来进行思考、选择、应用。多多练习可以更加熟练。

读者福利:知道你可能对Python感兴趣,便准备了这套python学习资料
对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。 一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python永久使用安装包Python web开发Python爬虫Python数据分析人工智能软件测试机器学习等学习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取

在这里插入图片描述

相关文章:

Python 数据可视化的 3 大步骤,你知道吗?

Python实现可视化的三个步骤&#xff1a; 确定问题&#xff0c;选择图形转换数据&#xff0c;应用函数参数设置&#xff0c;一目了然 1、首先&#xff0c;要知道我们用哪些库来画图? matplotlib Python中最基本的作图库就是matplotlib&#xff0c;是一个最基础的Python可视…...

CSS基础:盒子模型和浮动

盒子模型 所有HTML元素可以看作盒子&#xff0c;在CSS中&#xff0c;"box model"这一术语是用来设计和布局时使用 CSS盒模型本质上是一个盒子&#xff0c;封装HTML元素。 它包括&#xff1a;外边距&#xff08;margin&#xff09;&#xff0c;边框&#xff08;bord…...

OpenHarmony使用Socket实现一个TCP服务端详解

点击获取BearPi-HM_Nano源码 ,以D4_iot_tcp_server为例: 点击查看:上一篇关于socket udp实现的解析 查看 TCPServerTask 方法实现: static void TCPServerTask(void) {//连接WifiWifiConnect("TP-LINK_65A8",...

kafka监控工具安装和使用

1. KafkaOffsetMonitor 该监控是基于一个jar包的形式运行&#xff0c;部署较为方便。只有监控功能&#xff0c;使用起来也较为安全(1)消费者组列表 (2)查看topic的历史消费信息. (3)每个topic的所有parition列表(topic,pid,offset,logSize,lag,owner) (4)对consumer消费情况进…...

近期工作感悟

从应届生变为社畜已经半年了&#xff0c;在这里吐槽一下自己的所想给自己看。 首先是心理层面上的&#xff0c;初期大大增加的压力。 我觉得应届生能够来到大厂的&#xff0c;基本都是在大学有去规划学习&#xff0c;对自己技能比较认可的。比如我在学校自学游戏开发&#xff…...

大数据框架之Hadoop:HDFS(三)HDFS客户端操作(开发重点)

3.1 HDFS客户端环境准备 1&#xff0e;根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径&#xff08;例如&#xff1a;D:\javaEnv\hadoop-2.77&#xff09;&#xff0c;如下图所示。 2&#xff0e;配置HADOOP_HOME环境变量&#xff0c;如下图所示。 3&#…...

多模式支持无线监控技术:主动式定位、被动式定位

物联网空间信息与数字技术发展至今&#xff0c;已经催生了一大批优秀的践行者。在日常与商业应用中&#xff0c;室内外定位领域依托于这一技术的发展&#xff0c;更是在近几年风光无限。但是并不是说室内定位与室外定位都已经相当成熟&#xff0c;相对来说&#xff0c;室内定位…...

Cy5 Alkyne,1223357-57-0,花青素Cyanine5炔基,氰基5炔烃

CAS号&#xff1a;1223357-57-0 | 英文名&#xff1a; Cyanine5 alkyne&#xff0c;Cy5 Alkyne | 中文名&#xff1a;花青素CY5炔基CASNumber&#xff1a;1223357-57-0Molecular formula&#xff1a;C35H42ClN3OMolecular weight&#xff1a;556.19Purity&#xff1a;95%Appear…...

【MySQL】MySQL 中 WITH 子句详解:从基础到实战示例

文章目录一、什么是 WITH 子句1. 定义2.用途二、WITH 子句的语法和用法1.语法2.使用示例3.优点三、总结"梦想不会碎&#xff0c;只有被放弃了才会破灭。" "Dreams wont break, only abandoned will shatter."一、什么是 WITH 子句 1. 定义 WITH 子句是 M…...

c/c++开发,无可避免的模板编程实践(篇一)

一、c模板 c开发中&#xff0c;在声明变量、函数、类时&#xff0c;c都会要求使用指定的类型。在实际项目过程中&#xff0c;会发现很多代码除了类型不同之外&#xff0c;其他代码看起来都是相同的&#xff0c;为了实现这些相同功能&#xff0c;我们可能会进行如下设计&#xf…...

mulesoft MCIA 破釜沉舟备考 2023.02.13.04

mulesoft MCIA 破釜沉舟备考 2023.02.13.03 1. An integration Mule application consumes and processes a list of rows from a CSV file.2. One of the backend systems involved by the API implementation enforces rate limits on the number of request a particle clie…...

Camtasia2023最新版本新功能及快捷键教程

使用Camtasia&#xff0c;您可以毫不费力地在计算机的显示器上录制专业的活动视频。除了录制视频外&#xff0c;Camtasia还允许您从外部源将高清视频导入到录制中。Camtasia的独特之处在于它可以创建包含可单击链接的交互式视频&#xff0c;以生成适用于教室或工作场所的动态视…...

Fabric磁盘扩容后数据迁移

线上环境原来的磁盘比较小&#xff0c;随着业务数据的增多&#xff0c;磁盘需要扩容&#xff0c;因此需要把原来docker数据转移至新的数据盘。 数据迁移 操作系统&#xff1a; centOS 7   docker默认的数据目录为/var/lib/docker   创建一个新的目录/opt/dockerdata&…...

大厂光环下的功能测试,出去面试自动化一问三不知

在一家公司待久了技术能力反而变弱了&#xff0c;原来的许多知识都会慢慢遗忘&#xff0c;这种情况并不少见。一个京东员工发帖吐槽&#xff1a;感觉在大厂快待废了&#xff0c;出去面试问自己接口环境搭建、pytest测试框架&#xff0c;自己做点工太久都忘记了。平时用的时候搜…...

SATA SSD需要NCQ开启吗?

一、故事开篇最近有同学在咨询&#xff0c;SATA SSD是否需要NCQ功能&#xff1f;借此机会&#xff0c;今天我们来聊聊这个比较古老的话题&#xff0c;关于SATA协议的NCQ的故事。首先我们先回顾下SATA与NCQ的历史&#xff1a;2003年&#xff0c;SATA协议1.0问世&#xff0c;传输…...

知识图谱业务落地技术推荐之图神经网络算法库图计算框架汇总

1.PyTorch Geometric: https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html PyG是一个基于PyTorch的用于处理不规则数据(比如图)的库,或者说是一个用于在图等数据上快速实现表征学习的框架。它的运行速度很快,训练模型速度可以达到DGL(Deep Gra…...

==与equals()的区别

与equals()的区别 对于 比较的是值是否相等如果作用于基本数据类型的变量&#xff0c;则直接比较其存储的 “值”是否相等&#xff1b;如果作用于引用类型的变量&#xff0c;则比较的是所指向的对象的地址 对于equals方法 equals方法不能作用于基本数据类型的变量&#xff…...

【人工智能】对贝叶斯网络进行吉布斯采样

问题 现要求通过吉布斯采样方法&#xff0c;利用该网络进行概率推理&#xff08;计算 P(RT|SF, WT)、P2(CF|WT)的概率值&#xff09;。 原理 吉布斯采样的核心思想为一维一维地进行采样&#xff0c;采某一个维度的时候固定其他的维度&#xff0c;在本次实验中&#xff0c;假…...

Java 面向对象基础

文章目录一、类和对象1. 类的定义2. 对象的使用二、对象内存图三、成员变量和局部变量四、封装1. private 关键字2. this 关键字五、构造方法六、标准类制作一、类和对象 在此之前&#xff0c;我们先了解两个概念&#xff0c;对象和类。 万物皆对象&#xff0c;客观存在的事物…...

RocketMQ源码(21)—ConsumeMessageConcurrentlyService并发消费消息源码

基于RocketMQ release-4.9.3&#xff0c;深入的介绍了ConsumeMessageConcurrentlyService并发消费消息源码。 此前我们学习了consumer消息的拉取流程源码&#xff1a; RocketMQ源码(18)—DefaultMQPushConsumer消费者发起拉取消息请求源码RocketMQ源码(19)—Broker处理Default…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...