R数据分析:孟德尔随机化中介的原理和实操
中介本身就是回归,基本上我看到的很多的调查性研究中在中介分析的方法部分都不会去提混杂,都是默认一个三角形画好,中介关系就算过去了,这里面默认的逻辑就是前两步回归中的混杂是一样的,计算中介效应的时候就自动消掉了。
但是,实际上对不对,还是有待具体分析的:
Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error
孟德尔随机化作为一个天然的免去混杂的方法,和中介结合,整个中介又变得更纯净了,是一种更加值得推崇的中介做法,也是孟德尔随机化研究的必要的延申。
今天给大家介绍孟德尔随机化中介分析的两个方法multivariable MR (MVMR) and two-step MR
先回顾中介作用
中介分析的基本的概念,就是大家熟悉的三角形:
c是总效应,加上中介变量后,A*B是间接效应,C'是直接效应,有总效应=间接效应+直接效应。
上图中如果总效应,直接效应和间接效应方向都相同的情况下,我们还可以报告中介效应比例,为间接效应比上总效应。
上面的图中的中介效应成立依赖几个假设:
首先就是没有混杂,包括变量之间没有混杂(或者像前面写的直接抵消);暴露不会造成额外混杂;暴露和中介变量没有交互。
再看孟德尔随机化的优势之一就是不受混杂影响,得到纯净的效应,所以将孟德尔随机化延伸一步去探究中介有天然优势。
MR approach retains the benefits of using genetic instruments for causal inference, such as avoiding bias due to confounding, while allowing for estimation of the different effects required for mediation analysis
multivariable MR
按照传统的回归中介的做法思想,我们如果可以跑多变量孟德尔,就可以做出中介分析的结果,具体就是两个暴露的孟德尔,一个是我们关心的暴露,另一个是中介。
MVMR estimates the “direct” causal effects of each exposure included in the estimation on the outcome, conditional on the other exposures included in the model.
跑多变量孟德尔后我们就可以得到中介模型中的直接效应:
就是说这样子跑下来我们就可以得到下图中的c'(直接效应)和B:
再加上我们单独跑一个暴露到结局的孟德尔,我们就有总效应了,利用总效应减去直接效应我们就可以得到间接效应(有了b,a也就出来了),整个中介分析就跑完了,这个就是多变量孟德尔跑中介分析的逻辑。
MR estimates the “total” effect of the exposure on the outcome, whereas MVMR estimates the “direct” effect of each exposure on the outcome
The genetic instrument for both the primary exposure and the second exposure (mediator) are included as instruments in the analysis . The indirect effect can then be estimated by subtracting the direct effect from the total effect (akin to the difference in coefficients method)
Two-step MR
此方法也可以用来计算中介,分为两步,第一步是计算暴露对中介变量的效应得到a,第二步是计算中介到结局的效应得到b,然后两系数相乘得到中介效应。
用总效应(单独跑一个暴露到结局的孟德尔,我们就有总效应了)减去中介效应后得到直接效应,到这儿所有的系数都有了。
The indirect effect of the exposure on the outcome can then be calculated by multiplying the effect of the exposure on the mediator and the effect of the mediator on the outcome. This is equivalent to the product of coefficients method of mediation analysis.
普通的回归肯定是不能这么做的(要得到系数B必须控制暴露),但是我们是跑的孟德尔,就意味着此时的我们跑出来的暴露到中介的效应A是纯净的,相应地B也是纯净的,所以我们才能这么跑。
两步孟德尔在跑的时候要注意,第二步使用的工具变量需要排除第一步就使用过的,因为合格的工具变量本身就不能重复,按理说两步的工具变量本身不应该存在重复,所以如果有重复在第二步的时候得排除掉。
First, genetic IVs associated with the risk factor are used to determine the causal effect of the risk factor on the potential mediator (step one). Secondly, genetic IVs associated with the potential mediator and independent of those used for step one are used to determine the effect of the potential mediator on the outcome of interest (step two)
上面两种方法都是孟德尔中介做法的思想,具体到操作上会有一些问题,比如用MVMR我们得到直接效应,用总效应减去直接效应我们其实只能得到间接效应的点估计,同样的,Two-step MR也存在这个问题,我们只能得到间接效应的点估计,怎么求标准误,和置信区间是在实操中要解决的问题。
下面给大家介绍几种解决方法。
相关文章:
R数据分析:孟德尔随机化中介的原理和实操
中介本身就是回归,基本上我看到的很多的调查性研究中在中介分析的方法部分都不会去提混杂,都是默认一个三角形画好,中介关系就算过去了,这里面默认的逻辑就是前两步回归中的混杂是一样的,计算中介效应的时候就自动消掉…...
【C++】 类和对象 (下)
文章目录📕再谈构造函数1. 构造函数体赋值2. 初始化列表3. explicit 关键字📕static 成员1. 概念2. static 成员变量3. static 成员函数📕 友元1. 友元函数2. 友元类📕内部类📕编译器优化📕再谈构造函数 1…...
asp获取毫秒时间戳的方法 asp获取13位时间戳的方案
一、背景。时间戳就是计算当前与"1970-01-01 08:00:00"的时间差,在asp中通常是使用Datediff函数来计算两个日期差,代码:timestamp Datediff("s", "1970-01-01 08:00:00",now)返回结果:1675951060可…...
Python基础篇(十五)-- Python程序接入MySQL数据库
程序运行时,数据都在内存中,程序终止时,需要将数据保存到磁盘上。为了便于程序保存和读取,并能直接通过条件快速查询到指定数据,数据库(Database)应运而生,本篇主要学习使用Python操作数据库,在…...
程序员不得不知道的 API 接口常识
说实话,我非常希望自己能早点看到本篇文章,大学那个时候懵懵懂懂,跟着网上的免费教程做了一个购物商城就屁颠屁颠往简历上写。 至今我仍清晰地记得,那个电商教程是怎么定义接口的: 管它是增加、修改、删除、带参查询…...
【项目精选】基于Java的银行排号系统的设计与实现
银行排号系统是为解决一些服务业营业大厅排队问题而设计的,它能够有效地提高工作人员的工作效率,也能够使顾客合理的安排等待时间,让顾客感到服务的公平公正。论文首先讨论了排号系统的背景、意义、应用现状以及研究与开发现状。本文在对C/S架…...
前端 基于 vue-simple-uploader 实现大文件断点续传和分片上传
文章目录一、前言二、后端部分新建Maven 项目后端pom.xml配置文件 application.ymlHttpStatus.javaAjaxResult.javaCommonConstant.javaWebConfig.javaCheckChunkVO.javaBackChunk.javaBackFileList.javaBackChunkMapper.javaBackFileListMapper.javaBackFileListMapper.xmlBac…...
解决报错: ERR! code 128npm ERR! An unknown git error occurred
在github下载的项目运行时,进行npm install安装依赖时,出现如下错误:npm ERR! code 128npm ERR! An unknown git error occurrednpm ERR! command git --no-replace-objects ls-remote ssh://gitgithub.com/nhn/raphael.gitnpm ERR! gitgithu…...
聊城高新技术企业认定7项需要注意的问题 山东同邦科技分享
聊城高新技术企业认定7项需要注意的问题 山东同邦科技分享 山东省高新技术企业认定办公室发布《关于开展2021年度本市高新技术企业认定管理工作的通知》,高企认定中有哪些问题需要注意呢?下面我们一起来看一下。 一、知识产权 知识产权数量和质量双达…...
菊乐食品更新IPO招股书:收入依赖单一地区,规模不及认养一头牛
近日,四川菊乐食品股份有限公司(下称“菊乐食品”)预披露更新招股书,准备在深圳证券交易所主板上市,保荐机构为中信建投证券。据贝多财经了解,这已经是菊乐食品第四次冲刺A股上市,此前三次均未能…...
Elasticsearch安装IK分词器、配置自定义分词词库
一、分词简介 在Elasticsearch中,假设搜索条件是“华为手机平板电脑”,要求是只要满足了其中任意一个词语组合的数据都要查询出来。借助 Elasticseach 的文本分析功能可以轻松将搜索条件进行分词处理,再结合倒排索引实现快速检索。Elasticse…...
Linux嵌入式开发——shell脚本
文章目录Linux嵌入式开发——shell脚本一、shell脚本基本原则二、shell脚本语法2.1、编写shell脚本2.2、交互式shell脚本2.3、shell脚本的数值计算2.4、test命令&&运算符||运算符2.5、中括号[]判断符2.6、默认变量三、shell脚本条件判断if thenif then elsecase四、she…...
CV【5】:Layer normalization
系列文章目录 Normalization 系列方法(一):CV【4】:Batch normalization Normalization 系列方法(二):CV【5】:Layer normalization 文章目录系列文章目录前言2. Layer normalizati…...
跳跃游戏 II 解析
题目描述给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i j] 处:0 < j < nums[i] i j < n返回到达 nums[n - 1] 的…...
易基因|猪肠道组织的表观基因组功能注释增强对复杂性状和人类疾病的生物学解释:Nature子刊
大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。2021年10月6日,《Nat Commun》杂志发表了题为“Pig genome functional annotation enhances the biological interpretation of complex traits and human disease”的研究论文…...
01- NumPy 数据库 (机器学习)
numpy 数据库重点: numpy的主要数据格式: ndarray 列表转化为ndarray格式: np.array() np.save(x_arr, x) # 使用save可以存一个 ndarray np.savetxt(arr.csv, arr, delimiter ,) # 存储为 txt 文件 np.array([1, 2, 5, 8, 19], dtype float32) # 转换…...
RapperBot僵尸网络最新进化:删除恶意软件后仍能访问主机
自 2022 年 6 月中旬以来,研究人员一直在跟踪一个快速发展的 IoT 僵尸网络 RapperBot。该僵尸网络大量借鉴了 Mirai 的源代码,新的样本增加了持久化的功能,保证即使在设备重新启动或者删除恶意软件后,攻击者仍然可以通过 SSH 继续…...
拦截器interceptor总结
拦截器一. 概念拦截器和AOP的区别:拦截器和过滤器的区别:二. 入门案例2.1 定义拦截器bean2.2 定义配置类2.3 执行流程2.4 简化配置类到SpringMvcConfig中一. 概念 引入: 消息从浏览器发送到后端,请求会先到达Tocmat服务器&#x…...
轻松实现微信小程序上传多文件/图片到腾讯云对象存储COS(免费额度)
概述 对象存储(Cloud Object Storage,COS)是腾讯云提供的一种存储海量文件的分布式存储服务,用户可通过网络随时存储和查看数据。个人账户首次开通COS可以免费领取50GB 标准存储容量包6个月(180天)的额度。…...
Golang中defer和return的执行顺序 + 相关测试题(面试常考)
参考文章: 【Golang】defer陷阱和执行原理 GO语言defer和return 的执行顺序 深入理解Golang defer机制,直通面试 面试富途的时候,遇到了1.2的这个进阶问题,没回答出来。这种题简直是 噩梦\color{purple}{噩梦}噩梦,…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...
