当前位置: 首页 > news >正文

【最优化理论】线性规划

文章目录

  • 什么是线性规划(Linear Programming,LP)?
  • 线性规划的标准形式
  • 非标准形LP模型转化为标准形LP模型
  • 基本概念
    • 基本解&基矩阵&基变量&非基变量
    • 基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行解
    • 基本可行解存在性
    • 求基本可行解
      • 示例:求基本可行解
    • 求最优解
      • 方法一(暴力枚举):求出所有基本可行解找最小
      • 方法二(迭代):从一个基本可行解跳转到一个目标函数值更小的基本可行解
  • 多面体
  • 多面体分解定理
  • 单纯形法
    • 基本思想
    • 原理
    • 方法
    • 1 确定出基变量和出基向量的下标
    • 2 确定进基变量和进基向量的下标
    • 3 确定进基变量的值
      • 终止条件
  • 单纯形法计算步骤
  • 单纯形法表格形式

什么是线性规划(Linear Programming,LP)?

目标函数为决策变量的线性函数,同时约束条件为线性等式或线性不等式约束。

线性规划的标准形式

在这里插入图片描述
在这里插入图片描述

非标准形LP模型转化为标准形LP模型

在这里插入图片描述

基本概念

在这里插入图片描述

基本解&基矩阵&基变量&非基变量

基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行解

在这里插入图片描述

基本可行解存在性

在这里插入图片描述

求基本可行解

求基本可行解<=>求极点<=>求可行基矩阵<=>Am∗nA_{m*n}Amn矩阵m个线性无关列
在这里插入图片描述

示例:求基本可行解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

求最优解

方法一(暴力枚举):求出所有基本可行解找最小

求出所有基本可行解(即求极点)。
代入目标函数找出最小极点(该最小极点即为最优解,因为最优解一定在极点取得)。

方法二(迭代):从一个基本可行解跳转到一个目标函数值更小的基本可行解

在这里插入图片描述

多面体

在这里插入图片描述

多面体基本性质

在这里插入图片描述

多面体的极点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

x若是极点,正分量对应的A的列一定线性无关。

示例:求极点

在这里插入图片描述

多面体S有多少个极点?- 有限个 & 最多CnmC_n^mCnm

最多有CnmC_n^mCnm个极点,一般都少于CnmC_n^mCnm,有两个原因。
原因1:从n个列中选出m列不一定线性无关。
原因2:即使这m列线性无关,其组成的B也不一定满足B−1b≥0B^{-1}b\ge 0B1b0

多面体的方向

在这里插入图片描述

多面体的极方向

在这里插入图片描述
在这里插入图片描述

多面体的极方向有多少个?- 有限个

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

示例:求极方向

在这里插入图片描述
d≥0

多面体分解定理

在这里插入图片描述

多面体分解定理有什么作用?

在这里插入图片描述

在这里插入图片描述

重新表示可行集

在这里插入图片描述

重新定义线性规划问题

在这里插入图片描述
在这里插入图片描述

为什么min⁡∑λiCTxi\min \sum \lambda_i C^Tx_iminλiCTxi等价于min⁡CTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxi,i=1,...,k

min⁡CTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxii=1,...,k,找到最小xrx_rxr就是最优值点,令min⁡∑λiCTxi\min \sum \lambda_i C^Tx_iminλiCTxiλr=1\lambda_r=1λr=1其他的λ都为0,CTxrC^Tx_rCTxr就是最优值。

何时有最优解?

CTdj≥0C^Td_j \ge 0CTdj0时,存在最优解。

CTdj<0C^Td_j \lt 0CTdj<0时,无解。

最优解是什么?

最优解一定在极点上取到。

min⁡CTxi,i=1,...,k\min C^Tx_i,i=1,...,kminCTxii=1,...,k,找到最小xrx_rxr就是最优值点,CTxrC^Tx_rCTxr就是最优值。

单纯形法

在这里插入图片描述

基本思想

在这里插入图片描述

原理

实现基本可行基的转化

方法

在这里插入图片描述

从初始基本可行解出发,求一个改进的基本可行解。

1 确定出基变量和出基向量的下标

2 确定进基变量和进基向量的下标

3 确定进基变量的值

目标函数值只与非基变量有关。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

终止条件

在这里插入图片描述

单纯形法计算步骤

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

单纯形法表格形式

相关文章:

【最优化理论】线性规划

文章目录什么是线性规划&#xff08;Linear Programming&#xff0c;LP&#xff09;&#xff1f;线性规划的标准形式非标准形LP模型转化为标准形LP模型基本概念基本解&基矩阵&基变量&非基变量基本可行解&可行基矩阵&非退化的基本可行解&退化的基本可行…...

数据库测试的认知和分类

数据库测试的认知和分类 目录&#xff1a;导读 系统测试 集成测试 单元测试 功能测试 数据库性能 性能优化分4部分 安全测试 现在的软件系统&#xff0c;尤其是业务应用系统&#xff0c;后台都连接着一个数据库。数据库中存储了大量的数据&#xff0c;数据库的设计是否…...

MQ中间件概念一览

一、概述 1. 大多应用中&#xff0c;可通过消息服务中间件来提升系统异步通信、扩展解耦能力 2. 消息服务中两个重要概念&#xff1a; 消息代理&#xff08;message broker&#xff09;和目的地&#xff08;destination&#xff09; 当消息发送者发送消息以后&#xff0c;将由…...

爱尔兰公司注册要求及条件

简介&#xff1a; 爱尔兰是一个高度发达的资本主义国家&#xff0c;也是欧盟、经济合作与发展组织、世界贸易组织和联合国的成员国。并且也是世界经济发展速度快的国家之一&#xff0c;因经济发达赢得了“欧洲小虎”的美誉。总体来看&#xff0c;爱经济发展势头趋稳&#xff0c…...

Java中如何打印对象内存地址?

先看一个简单的程序&#xff0c;一般我们打印对象&#xff0c;大部分是下面的情况&#xff0c;可能会重写下toString()方法&#xff0c;这个另说 Frolan frolan new Frolan(); System.out.println(frolan);// 输出结果 com.test.admin.entity.Frolan2b80d80f这个结果其实是调…...

CF1707E Replace

题目描述 给定一个长为 nnn 的序列 a1,…,ana_1,\ldots,a_na1​,…,an​&#xff0c;其中对于任意的 iii 满足 1≤ai≤n1 \leq a_i \leq n1≤ai​≤n。 定义一个二元组函数如下&#xff1a; f((l,r))(min⁡{al,…,ar},max⁡{al,…,ar})(l≤r)f((l,r))(\min\{a_l,\ldots,a_r\}…...

【Hello Linux】Linux工具介绍 (make/makefile git)

作者&#xff1a;小萌新 专栏&#xff1a;Linux 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;介绍Linux的常用工具make/makefile git Linux项目自动化构建工具 – make/Makefile 背景 会不会写Makefile 从侧面说明了一个人是否具…...

享元模式flyweight

享元模式属于结构型模式。享元模式是池技术的重要实现方式&#xff0c;它可以减少重复对象的创建&#xff0c;使用缓存来共享对象&#xff0c;从而降低内存的使用。细粒度的对象其状态可以分为两种&#xff1a;内部状态和外部状态。应用场景系统存在大量相似或相同的对象。外部…...

Pulsar

一、简介Apache Pulsar是Apache软件基金会顶级项目&#xff0c;是下一代云原生分布式消息流平台&#xff0c;集消息、存储、轻量化函数式计算为一体&#xff0c;采用计算与存储分离架构设计&#xff0c;支持多租户、持久化存储、多机房跨区域数据复制&#xff0c;具有强一致性、…...

项目介绍 + 定长内存池设计及实现

你好&#xff0c;我是安然无虞。 文章目录项目介绍当前项目做的是什么?技术栈内存池是什么?池化技术内存池内存池主要解决的问题malloc定长内存池学习目的定长内存池设计项目介绍 当前项目做的是什么? 这个项目是实现一个高并发的内存池, 它的原型是 Google 的一个开源项…...

Linux--线程安全的单例模式--自旋锁--0211

1. 线程安全的单例模式 1.1 什么是单例模式 某些类, 只应该具有一个对象(实例), 就称之为单例. 1.1.1 懒汉方式实现单例模式 以上篇博文的线程池为例 Liunx--线程池的实现--0208 09_Gosolo&#xff01;的博客-CSDN博客 实现懒汉模式首先要先将构造函数私有化&#xff0c;…...

图文解说S参数(进阶篇)

S参数是RF工程师/SI工程师必须掌握的内容&#xff0c;业界已有多位大师写过关于S参数的文章&#xff0c;即便如此&#xff0c;在相关领域打滚多年的人&#xff0c; 可能还是会被一些问题困扰着。你懂S参数吗? 图文解说S参数&#xff08;基础篇&#xff09; 请继续往下看...台湾…...

Sentinel源码阅读

基础介绍 Sentinel 的使用可以分为两个部分: 核心库&#xff08;Java 客户端&#xff09;&#xff1a;不依赖任何框架/库&#xff0c;能够运行于 Java 8 及以上的版本的运行时环境&#xff0c;同时对 Dubbo / Spring Cloud 等框架也有较好的支持&#xff08;见 主流框架适配&…...

2023年浙江食品安全管理员考试真题题库及答案

百分百题库提供食品安全管理员考试试题、食品安全管理员考试预测题、食品安全管理员考试真题、食品安全管理员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 一、判断题 7.&#xff08;重点&#xff09;《餐饮服务食品安全…...

Webstorm 代码没有提示,uniapp 标签报错

问题 项目是用脚手架创建的&#xff1a; vue create -p dcloudio/uni-preset-vue my-project 打开之后&#xff0c;添加view标签警告报错的。代码也没有提示&#xff0c;按官方说法&#xff1a;CLI 工程默认带了 uni-app 语法提示和 5App 语法提示。 但是我这里就是有问题。…...

MySQL-Innodb引擎事务原理

文章目录1.事务介绍2 事务特性3. 事务的实现原理4 redo log 保证持久性5 undo log 保证原子性6 MVCC 概念6.1 隐藏字段6.2 版本链6.3 ReadView6.3.1readview 版本控制规则7 隔离性 实现7.2 隔离性- REPEATABLE READ 可重复读下8 一致性1.事务介绍 事务是一组操作的集合&#xf…...

Linux操作系统学习(了解环境变量)

文章目录环境变量初识除了上述介绍的PATH&#xff0c;还有一些常见的环境变量如&#xff1a;查看环境变量方法 &#xff1a;环境变量的基本概念&#xff1a;本地变量&#xff1a;环境变量初识 环境变量解释起来比较抽象&#xff0c;先看示例&#xff1a; #include <stdio.…...

数据分析思维(六)|循环/闭环思维

循环/闭环思维 1、概念 在很多的分析场景下&#xff0c;我们需要按照一套流程反复分析&#xff0c;而不是进行一次性的分析&#xff0c;也就是说这套流程的结果会成为该流程的新一次输入&#xff0c;从而形成一个闭环&#xff0c;此时的分析思维我们称之为循环/闭环思维。 常…...

C++:类和对象(下)

文章目录1 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字2 static成员2.1 概念2.2 特性3 友元3.1 友元函数&#xff08;流插入&#xff08;<<&#xff09;及流提取&#xff08;>>&#xff09;运算符重载&#xff09;3.2 友元类4 内部类5 匿名对…...

ASP.NET Core MVC 项目 AOP之IResultFilter和IAsyncResultFilter

目录 一:说明 二:IActionFilter同步 三:IAsyncActionFilter异步 一:说明 IResultFilter同步过滤器与IAsyncResultFilter异步过滤器常常被用作于渲染视图或处理结果。 IResultFilter同步过滤器执行顺序: 1:执行控制器中的构造函数,实例化控制器 2:执行具体的Acti…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...