当前位置: 首页 > news >正文

(1分钟速通面试) 矩阵分解相关内容

矩阵分解算法--总结

QR分解 LU分解

本篇博客总结一下QR分解和LU分解,这些都是矩阵加速的操作,在slam里面还算是比较常用的内容,这个地方在isam的部分出现过。(当然isam也是一个坑,想要出点创新成果的话 可能是不太现实的 短期来讲 哈哈哈)

假定我们能把矩阵A写成下列两个矩阵相乘的形式:A=LU,其中L为下三角矩阵,U为上三角矩阵。这样我们可以把线性方程组Ax= b写成Ax= (LU)x = L(Ux) = b。令Ux = y,则原线性方程组Ax = b可首先求解向量y 使Ly = b,然后求解 Ux = y,从而达到求解线性方程组Ax= b的目的。(非常熟悉的 数值分析课上学的LU分解的形式)

编辑

添加图片注释,不超过 140 字(可选)

LD(LT)的形式,就是把上面的LU分解中拆出来一个倍数矩阵,然后我觉得没啥必要。在这里也放上。

定理:若对称矩阵A的各阶顺序主子式不为零时,则A可以唯一分解为A= LDLT,这里。

编辑

添加图片注释,不超过 140 字(可选)

下面是cholesky分解 读作乔列斯基分解, 栓Q 这些英文名字要是不会读的话 你在讲相关内容的时候就会显得很尴尬 哈哈哈 笑死。

Cholesky分解是一种分解矩阵的方法, 在线形代数中有重要的应用。Cholesky分解把矩阵分解为一个下三角矩阵以及它的共轭转置矩阵的乘积(那实数界来类比的话,此分解就好像求平方根)。与一般的矩阵分解求解方程的方法比较,Cholesky分解效率很高。

对于上面这段定义,让我认知扩充了。上学期学的数值分析里面我知道是转置矩阵,但是没想到是共轭转置矩阵。也就是说一开始我是不知道他还有个共轭的关系在里面的。行了,现在知道了。可能上学期学的内容都是定义在实数域上面的,那么共轭的概念就逐渐被弱化了。现在记住了,原来是共轭转置矩阵。心里默念三遍 hhh

QR分解

矩阵的QR分解是指,可以将矩阵A分级成一个正交阵Q和一个上三角矩阵R的乘积。实际中,QR分解经常被用来解线性最小二乘问题。

编辑

添加图片注释,不超过 140 字(可选)

上面这个就是QR分解,感觉这些的话 会用就行,知道谁的速度快,然后什么情况下的矩阵适合什么样的方法即可。

SVD分解

编辑切换为居中

添加图片注释,不超过 140 字(可选)

说白了,这里的奇异值就是特征值的含义。那么这个矩阵的话,按照我本科的学习思路来说,就是由特征向量和特征值来共同组成的。就是那一套,莱姆大E - A的行列式,求特征值,特征向量,然后就写出来。现在的话,对特征值也是有一定的理解了。特征值可以反应数据的离散情况,也反映了数据的分布 同时可能也反映了数据的趋势。好了,这个特征值的话还是很有用的。在机器学习的一个面试题里面,特征值大的方向,数据会越离散,反之数据会越集中。当然我们研究的话,应该是研究离散的,因为这样好区分。前面这句话主要针对分类来说,因为你的数据离散了,可区分性好了以后,那么我们做分类的效果才显著,这样的研究才有意义。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

上面这幅图的话 主要说了广义逆矩阵的事情,为啥说是广义呢,因为平时我们定义的逆矩阵一定是一个方阵,这里不是方阵了,那么就称作是广义逆矩阵了。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

本科的时候我们叫他乔丹分解,哈哈哈 就是aj的那个乔丹。笑死。

这个没啥好说的,就是jardon块的构造,这个也是根据特征值的次数来进行构造的。可能再看一看就能想起来相关内容了,所以这里省略。(主要是slam里面好像并不提及这个东西,反正我是没见过 hhh)

编辑

添加图片注释,不超过 140 字(可选)

这里有一个比较。笑死,LU分解最快了。

那在这里对矩阵的分解进行一个总结。也就是说平时我们在解方程组的时候,如果求逆,会加大计算量。我们这时会选择矩阵分解的方法来进行求逆的代替。然后进而求得方程的解。笑死 我想起来上学期的考试,在线LU分解 在线cholesky分解,直接写结果,真的非常方便。如果按照它们的定义一步步地计算的话,我估计最起码20分钟 在不算错的情况下。行了 本篇就讲到这里,这个矩阵分解的内容,opencv也进行了相应地包装。在这里的话不必过多赘述了。栓Q,本篇到此结束。

相关文章:

(1分钟速通面试) 矩阵分解相关内容

矩阵分解算法--总结QR分解 LU分解本篇博客总结一下QR分解和LU分解,这些都是矩阵加速的操作,在slam里面还算是比较常用的内容,这个地方在isam的部分出现过。(当然isam也是一个坑,想要出点创新成果的话 可能是不太现实的 短期来讲 哈…...

this指向

(1)在全局环境中的this——window 无论是否在严格模式下,在全局执行环境中(在任何函数体外部)this 都指向全局对象。 "use strict"console.log(this); //windowconsole.log(thiswindow);//true &#xff08…...

安卓小游戏:小板弹球

安卓小游戏:小板弹球 前言 这个是通过自定义View实现小游戏的第三篇,是小时候玩的那种五块钱的游戏机上的,和俄罗斯方块很像,小时候觉得很有意思,就模仿了一下。 需求 这里的逻辑就是板能把球弹起来,球…...

7、单行函数

文章目录1 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类2 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换3 字符串函数4 日期和时间函数4.1 获取日期、时间4.2 日期与时间戳的转换4.3 获取月份、星期、星…...

华为机试题:HJ56 完全数计算(python)

文章目录博主精品专栏导航知识点详解1、input():获取控制台(任意形式)的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() :打印输出。3、整型int() :将指定进制&#xf…...

opencv——傅里叶变换、低通与高通滤波及直方图等操作

1、傅里叶变换a、傅里叶变换原理时域分析:以时间为参照进行分析。频域分析:相当于上帝视角一样,看事物层次更高,时域的运动在频域来看就是静止的。eg:投球——时域分析:第1分钟投了3分,第2分钟投…...

【NGINX入门指北】 进阶篇

nginx 进阶篇 文章目录nginx 进阶篇一、Nginx Proxy 服务器1、代理原理2、proxy代理3、proxy缓存一、Nginx Proxy 服务器 1、代理原理 正向代理 内网客户机通过代理访问互联网,通常要设置代理服务器地址和端口。 反向代理 外网用户通过代理访问内网服务器&…...

Python中关于@修饰符、yeild关键词、next()函数的基本功能简述

关于修饰符:其实就是将修饰符下面的函数当成参数传给它上面的函数。 def a(x):print(a)adef b():print(b) 其效果等价为: def a(x):print(a)def b():print(b)a(b())有个记忆诀窍,的下面哪个函数最近,谁就是儿子,谁就…...

结合Coverity扫描Spring Boot项目进行Path Manipulation漏洞修复

本篇介绍使用Coverity 扫描基于Spring Boot 项目中的Path Manipulation 漏洞, 进而解决风险,并且可以通过扫描。 什么样的代码会被扫描有路径操纵风险? 在Spring Boot 项目中, 实验了如下的场景: 1. Control 中 file path 作为参数传递的会被扫描,单纯服务方法不会 场…...

【FFMPEG源码分析】从ffplay源码摸清ffmpeg框架(一)

ffplay入口 ffmpeg\fftools\ffplay.c int main(int argc, char **argv) {/*******************start 动态库加载/网络初始化等**************/int flags;VideoState *is;init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/* regis…...

C++蓝桥杯 基础练习,高精度加法,输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。

C蓝桥杯 基础练习,高精度加法 问题描述 输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储。对于这种问题,一般使用数组来处理。   定义一…...

MySQL面试题:SQL语句的基本语法

MySQL目录一、数据库入门1. 数据管理技术的三个阶段2. 关系型数据库与非关系型数据库3. 四大非关系型数据库a. 基于列的数据库(column-oriented)b. 键值对存储(Key-Value Stores)c. 文档存储(Document Stores&#xff…...

Fluid-数据编排能力原理解析

前言本文对Fluid基础功能-数据编排能力进行原理解析。其中涉及到Fluid架构和k8s csi driver相关知识。建议先了解相关概念,为了便于理解,本文使用JuiceFS作为后端runtime引擎。原理概述Fuild数据编排能力,主要是在云原生环境中,能…...

并发线程、锁、ThreadLocal

并发编程并发编程Java内存模型(JMM)并发编程核心问题—可见性、原子性、有序性volatile关键字原子性原子类CAS(Compare-And-Swap 比较并交换)ABA问题Java中的锁乐观锁和悲观锁可重入锁读写锁分段锁自旋锁共享锁/独占锁公平锁/非公平锁偏向锁/轻量级锁/重…...

CMMI-结项管理

结项管理(ProjectClosing Management, PCM)是指在项目开发工作结束后,对项目的有形资产和无形资产进行清算;对项目进行综合评估;总结经验教训等。结项管理过程域是SPP模型的重要组成部分。本规范阐述了结项管理的规程&…...

网络通信协议是什么?

网络通信基本模式 常见的通信模式有如下2种形式:Client-Server(CS) 、 Browser/Server(BS) 实现网络编程关键的三要素 IP地址:设备在网络中的地址,是唯一的标识。 端口:应用程序在设备中唯一的标识。 协议: 数据在网络中传输的…...

阶段5:Java分布式与微服务实战

目录 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 2、配置文件 3、启动注解 一、Eureka-server模块开发 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 父项目依赖:cloud-mall-practice springboot的…...

我的创作纪念日

目录 机缘 收获 日常 憧憬 机缘 其实本来从大一上学期后半段(2017)就开始谢谢零星的博客,只不过当时是自己用hexo搭建了一个小网站,还整了个域名:jiayoudangdang.top,虽然这个早就过期; 后来发现了CSDN&#xff…...

Qml学习——动态加载控件

最近在学习Qml,但对Qml的各种用法都不太熟悉,总是会搞忘,所以写几篇文章对学习过程中的遇到的东西做一个记录。 学习参考视频:https://www.bilibili.com/video/BV1Ay4y1W7xd?p1&vd_source0b527ff208c63f0b1150450fd7023fd8 目…...

设计模式之职责链模式

什么是职责链模式 职责链模式是避免请求发送者与接受者耦合在一起,让多个对象都可以接受到请求,从而将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理为止。     职责链模式包含以下几个角色:    …...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言: 类加载器 1. …...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...