当前位置: 首页 > news >正文

ChatGPT是什么?ChatGPT里的G、P、T分别指什么

文章目录

  • ChatGPT是什么
    • GTP中的 生成式 是什么意思
    • GTP中的 预训练 是什么意思
    • GTP中的 变换模型 是什么意思
  • 什么是Transformer
    • 什么是注意力机制
  • 监督学Xi、无监督学Xi、强化学Xi

在这里插入图片描述

ChatGPT是什么

GPT: Generative Pre-trained Transformer
生成式预训练变换模型

ChatGPT是由OpenAI开发的一个自然语言处理(NLP)模型,是一个基于人工智能技术的语言模型,它能够根据输入的文本生成自然语言回复。

"GPT"是"Generative Pre-trained Transformer"的缩写,是OpenAI开发的一种基于Transformer架构的深度学Xi模型,它能够根据输入的文本生成类似于人类语言的自然语言回复。

ChatGPT中的"G"(Generative)代表生成式,“P”(Pre-trained)代表预训练,“T”(Transformer)代表Transformer架构。

GTP中的 生成式 是什么意思

在GPT (Generative Pre-trained Transformer)中,生成式(generative)意味着这个模型能够生成新的文本序列。这与其他类型的自然语言处理模型不同,其他模型主要是用来对文本进行分类或者预测文本的标签。

通过预训练,GPT 模型能够学Xi大量的自然语言文本,从而能够捕捉到自然语言的语法、结构和语义等方面的规律。一旦GPT模型完成训练,就可以用来生成新的文本,这些文本是基于已经学Xi到的文本规律和结构进行生成的。

通过生成新文本,GPT模型可以应用于多种自然语言处理任务,例如:文本摘要、机器翻译、对话系统、问题回答、自动写作等等。GPT 的生成式能力使其成为自然语言生成任务中的一种有力工具,能够为自然语言处理领域带来新的创新和进步。

👉 简单来说 生成式就它能自发的生成内容

生成式AI的应用非常广泛,从自动摘要到文本生成、从语音合成到自然语言理解、从图像生成到计算机视觉,生成式AI正在改变许多行业。

GTP中的 预训练 是什么意思

预训练(Pre-training) 是指在大规模数据集上进行无监督学Xi,学Xi到一些通用的特征或知识,井将这些特征或知识迁移到其他任务上,用于增强模型的泛化能力和表现。预训练技术在自然语言处理。计算机视觉等领域中得到了广泛应用,并且在很多任务上取得了非常好的效果。

在自然语言处理领域,预训练通常指在大规模的语料库上进行无监督学Xi,学Xi到一些通用的语言知识,例如单词的词向量表示。句子的语义表示等等。这些预训练模型通常基于深度神经网络,例如递归神经网络(RNN) 。长短时记忆网络(LSTM) 。卷积神经网络(CNN)等,通过对大规模数据集进行预训练,可以得到一个通用的特征表示,然后可以将这些特征迁移到其他任务上,例如文本分类、命名实体识别、机暴翻译等任务。

在计算机视觉领域,预训练通常指在大规模的图像数据集上进行无监督学Xi,学Xi到一些通用的特征表示,例如图像的纹理、边缘、颜色等等。这些预训练模型通常基于卷积神经网络(CNN),例如AlexNet. VGG. ResNet等,通过对大规模数据集进行预训练,可以得到一个通用的特征表示,然后可以将这些特征迁移到其他任务上,例如图像分类、目标检测、图像分割等任务。

总之,预训练是一种在大规横数据集上进行无监督学Xi的技术,通过学Xi通用的特征或知识,可以增强模型的泛化能力和表现,并在自然语言处理、计算机视觉等领域中取得了广泛应用。

👉 简单来说 预训练不需要你拿到它在训练,它是个通用的语言模型,直接拿来用就可以了

预训练模型(Pre-trained Model)是指在大规模语料库的基础上,通过算法学Xi得到的一种预训练模型。这些模型通常是通过使用Transformer、LSTM等深度学Xi架构,以及针对不同任务和领域的数据进行训练得到的。

在语言模型领域,预训练模型主要用于自然语言处理(NLP)任务,例如文本分类、情感分析、问答系统等。预训练模型的优势在于,它们已经被大量的语料库训练,可以针对各种任务和领域进行优化,从而在性能上比传统的全手动训练模型更加优越。

GTP中的 变换模型 是什么意思

变换模型(Transtformer) 是一种基于自注意力机制的神经网络结构,最初是由Vaswani等人在论文"Attention is All You Need"中提出的。该结构主要用于自然语言处理任务,特别是机器翻译任务,由于在这些任务中序列的长度通常很长,因此传统的循环神经网络(RNN) 和卷积神经网络(CNN) 的效果不理想,而Transformer通过引入自注意力机制,实现了对序列的并行处理,井取得了较好的效果。

在Transformer中,自注意力机制可以在不同位置之间计算注意力权重,从而获得一个综合的表示。具体来说,输入序列首先经过一个叫做嵌入层(Embedding) 的模块,将每个单词嵌入到一个d维的向量空间中。然后,经过多个层次的自注意力和前馈神经网络(Feed-Forward Network)的计算,得到最终的输出。自注意力机制可以在序列中的每个位置计算权重,从而计算每个位置与序列中其他位置的关系。这样的注意力机制可以捕获序列中的长期依赖关系,而不像传统的RNN和LSTM一样,只能处理有限长度的序列。

变换模型在自然语言处理领域中应用广泛,特别是在机器翻译、文本分类、语言模型等任务中取得了非常好的效果。同时,变换模型的结构也被广泛应用到其他领域,例如图像处理、语音识别等任务中,成为了种重要的神经网络结构。

👉 简单来说 变换模型(Transtformer) 就是Google 提出来的一个模型它可以帮助更好的处理NLP相关的问题,是一种很强的神经网络结构。

变换模型(Transformer)是一种自然语言处理(NLP)模型,最初由Google在2017年提出,用于处理序列到序列的任务,例如机器翻译、文本生成、语言模型等。

传统的循环神经网络(RNN)和长短期记忆网络(LSTM)在处理序列数据时,容易出现梯度消失梯度爆炸的问题,导致模型难以训练和效果不佳。而变换模型则引入了新的变换方式,如位置编码注意力机制等,使得模型能够更好地捕捉序列数据中的长期依赖关系。

变换模型主要包括两个基本变换:位置编码和注意力机制。

位置编码:位置编码是指将输入序列中的每个位置进行编码,得到一个向量,该向量表示该位置在输入序列中的相对位置。这样,模型可以更好地捕捉输入序列中的长期依赖关系,例如语言的上下文信息。

注意力机制:注意力机制是指将输入序列中不同位置的信息进行加权平均,以更好地捕捉不同位置之间的依赖关系。例如,在处理自然语言时,模型可能会根据上下文信息对不同单词进行加权,以更好地区分相关单词。

总的来说,变换模型的引入使得序列到序列的任务处理变得更加容易,同时也提高了模型的表达能力和效果。

什么是Transformer

引用:http://jalammar.github.io/illustrated-transformer/

Transformer 可以简单理解为它是一个黑盒子,当我们在做文本翻译任务是,我输入进去一个中文,经过这个黑盒子之后,输出来翻译过后的英文。
Transformer不等于预训练模型,它不能完全摆脱人工标注数据。模型在质量上更优,更易于并行化,所需训练的时间明显变少。

在这里插入图片描述

什么是注意力机制

注意力机制(Attention Mechanism)是种神经网络结构,用于计算输入序列中不同部分之间的重要性,并将其应用于不同的自然语言处理任务中。注意力机制最初是在机器翻译任务中引入的,但现在已经广泛应用于各种自然语言处理任务中。

在自然语言处理中,注意力机制可以用于计算每个单词在上下文中的重要性,并将这些重要性应用于模型的输出中。例如,在机器翻译任务中,输入是源语言的一一句话,输出是目标语喜的一句话。注意力机制可以帮助模型关注源语言中与目标语言相美的部分,并将其翻译为目标语言。

注意力机制的计算过程通常由三个步骤组成:查询、键值对,计算权重。首先,将输入序列经过线性变换得到查询向量,将上下文序列经过线性变换得到健值对。然后,通过计算查询向量与每个键的相似度,得到注意力权重。最后根据注意力权重和键值对计算加权平均值,得到输出向量。

总之,注意力机制是一种神经网络结构,用于计算输入序列中不同部分之间的重要性,并将其应用于各种自然语言处理任务中。注意力机制可以帮助模型关注与任务相关的部分,并取得了在很多自然语言处理任务中非常好的效果。

用小学生可以理解的例子,形象的解释一下什么是Transformer中的注意力机制

假设你是一个小学生,你正在看一本厚厚的科普书,里面有许多重要的知识点,但你只有一定时间来阅读它。这时候,如果你能够集中注意力在最重要的知识点上,忽略那些不重要的内容,你就能更好地理解书中的内容。

在机器翻译中,Transformer模型也需要类似的能力,即需要从输入的源语言句子中挑选出最重要的部分来翻译成目标语言句子。注意力机制就是帮助Transformer模型集中注意力在输入序列中最重要的部分上的一种技术。让我们用一个例子来解释下Transformer模型中的注意力机制。 比如你正在学Xi一个英文句子:"The cat sat on the mat"想要将其翻译成中文。当Transformer模型对这个句子进行编码时,它会将句子中每个单词表示成一个向量,然后将这些向量输入到一个注意力机制中。

注意力机制会计算每个单词与其他单词的相关性,并给它们分配一个注意力权重。在这个例子中,注意力机制可能会将“cat"和"mat"之间的关系分配更高的权重,因为它们之间有一个"on the"短语,而这个短语对于理解整个句子的意思非常重要要。然后,这些注意力权重会被用来对单词向量进行加权产生一个加权向量,表示整个输入序列的含义。

在翻译过程中,这个加权向量会被传递到解码器中,解码器会根据这个加权向量生成对应的中文句子。这样,注意力机制就可以帮助Transformer模型集中注意力在输入序列中最重要的部分上,从而更好地理解输入序列和生成输出序列。

总之,注意力机制就像是在输入序列中找出最重要的信息,帮助模型更好地理解输入和输出。这个过程类似于小学生在学Xi中筛选出重要知识点,集中精力理解它们的过程。

这就好像你看到一个小学生,还是一个博士生,你肯定会用不同的方法来解释一件事情。但是ChatGPT没有眼睛,它看不到你是小学生还是博士生,所以你要给它一个印象,让他知道怎么回答你更好,这种感觉的。

监督学Xi、无监督学Xi、强化学Xi

生成式AI可以这样定义:通过各种机器学Xi(ML)方法从数据中学Xi工件的组件(要素),进而生成全新的、完全原创的、真实的工件(一个产品或物品或任务),这些工件与训练数据保持相似,而不是复制。 其本质是一种深度学Xi模型,是近年来复杂分布上无监督学Xi最具前景的方法之一。

生成式AI有三个主要的特点:

  1. 监督学Xi:监督学Xi主要是指在预训练过程中使用一组监督信号来训练模型。这些监督信号可以是真实的文本数据,也可以是一些标注数据,用来指示模型应该生成怎样的输出。通过在训练过程中使用这些监督信号,可以帮助模型更好地学习语言模式和知识,并生成更加自然和准确的输出。
  2. 无监督学Xi:生成式模型不需要标签来指定输入数据的类别,而是利用输入数据本身的特征进行训练。
  3. 强化学Xi:生成式模型可以通过尝试不同的行动来学Xi,就像在现实世界中一样,它可以通过尝试不同的行动来学Xi最佳策略。

生成式AI的应用非常广泛,从自动摘要到文本生成、从语音合成到自然语言理解、从图像生成到计算机视觉,生成式AI正在改变许多行业。

尝试不同的行动来学Xi,就像在现实世界中一样,它可以通过尝试不同的行动来学Xi最佳策略。

生成式AI的应用非常广泛,从自动摘要到文本生成、从语音合成到自然语言理解、从图像生成到计算机视觉,生成式AI正在改变许多行业。

在这里插入图片描述

相关文章:

ChatGPT是什么?ChatGPT里的G、P、T分别指什么

文章目录 ChatGPT是什么GTP中的 生成式 是什么意思GTP中的 预训练 是什么意思GTP中的 变换模型 是什么意思 什么是Transformer什么是注意力机制 监督学Xi、无监督学Xi、强化学Xi ChatGPT是什么 GPT: Generative Pre-trained Transformer 生成式预训练变换模型 ChatGPT是由Ope…...

Linux服务使用宝塔面板搭建网站,并发布公网访问 - 内网穿透

文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 转载自远程内网穿透的文章:Linux使用宝塔面板搭建网站,并内网穿透实现公网访问 前言 宝塔面板作为简单好用的服务器运维管理面板&#…...

TDA4VH j784s4 使用

// sdk https://www.ti.com/tool/PROCESSOR-SDK-J784S4 // Jacinto Processors TDA4AP-Q1/TDA4VP-Q1/TDA4AH-Q1/TDA4VH-Q1 EVM User’s Guide https://www.ti.com/lit/ug/spruj62/spruj62.pdf?ts1682337275236&ref_urlhttps%253A%252F%252Fwww.ti.com%252Fsitesearch%252…...

CSS布局基础(字体,文本,背景)

字体 常见字体设置 body {font-family: font-family: "Microsoft YaHei", Tahoma, Arial, Hiragino Sans GB,sans-serif; }浏览器从前到后匹配,找到可用字体结束,都没匹配上,使用浏览器默认字体 常用字号 不同浏览器默认字号可…...

Redis入门指南:深入了解这款高性能缓存数据库

本文将带您了解Redis的基本概念、数据类型、特性以及如何在实际项目中应用Redis。通过阅读本文,您将更好地理解如何利用Redis优化您的应用程序性能。 1. 什么是Redis?2. Redis的数据类型3. Redis的特性4. 如何使用Redis4.1 安装与启动4.2 基本命令4.3 应…...

# 数据结构和算法面试题系列-随机算法总结

0 概述 随机算法涉及大量概率论知识,有时候难得去仔细看推导过程,当然能够完全了解推导的过程自然是有好处的,如果不了解推导过程,至少记住结论也是必要的。本文总结最常见的一些随机算法的题目,是几年前找工作的时候…...

windows中vscode配置C/C++环境

首先要把MinGW的环境安装完,我一般是下载带有MinGW的codeblocks,这样省去自己安装MinGW。因为安装MinGW还挺麻烦的。 安装完codeblocks,找到其安装目录,把bin文件配置到环境变量去: 将bin添加到环境变量 然后打开vsco…...

shell编程之条件语句

shell编程之条件语句 一、条件测试操作1.test命令2.文件测试3.利用条件判断,创建文件4.整数值比较4.1 常用的测试操作符 5.字符串比较5.1 常用的测试操作符 6.逻辑测试6.1 常用的测试操作符 二、if语句的结构1.单分支结构2.双分支结构3.多分支结构4.if嵌套 三、case…...

【Python每日十题菜鸟版--第二天】

菜鸟实例 🍉前言1.判断奇偶性2.判断闰年3. 获取最大值最小值4. 质数(素数)的判断5.阶乘方法一方法二 6.九九乘法表7.斐波那契数列方法一 :循环计算法(一般方法)方法二: 递归 8.阿姆斯特朗数9. 十…...

拓扑排序模板及例题

概念 一个有向无环图必然存在一个拓扑序列与之对应。 流程: 先将所有入度为0的节点入队将队列中的节点出队,出队序列就是对应拓扑序。对于弹出的节点x,遍历x所有出度y,对y进行入读减一操作检查入度减一之后的节点y,…...

linux查看nginx安装路径

linux查看nginx安装路径 有几种方法可以查看nginx的安装路径: 使用which命令: which nginx这个命令会返回nginx的二进制文件路径,一般也是安装路径。 查看nginx的进程,得到安装路径: ps aux | grep nginx输出结果中有nginx的进程路径,这个也是安装路径。 在nginx的配置文…...

【生态环境保护】绿水青山就是金山银山——生态环保篇

环保是一个持续性的话题,不仅仅是在国内,整个世界都是一个命运共同体从城市垃圾分类,到农村/村镇污水治理,城乡一体化和因地制宜的实施方式,是我们一直在探索的。 从余村到全国,从中国到世界,“…...

配置Docker镜像加速器-Docker命令-Docker 容器的数据卷

Docker架构 docker进程(daemon) 镜像(Image):Docker 镜像(Image),就相当于是一个 root 文件系统。比如官方镜像 ubuntu:16.04 就包含了完整的一套 Ubuntu16.04 最小系统的 root 文件…...

ARM开发调试方法

用户选用ARM处理器开发嵌入式系统时,选择合适的开发工具可以加快开发进度,节省开发成本。因此一套含有编辑软件、编译软件、汇编软件、链接软件、调试软件、工程管理及函数库的集成开发环境(IDE)一般来说是必不可少的,…...

【Spring篇】IOC/DI注解开发

🍓系列专栏:Spring系列专栏 🍉个人主页:个人主页 目录 一、IOC/DI注解开发 1.注解开发定义bean 2.纯注解开发模式 1.思路分析 2.实现步骤 3.注解开发bean作用范围与生命周期管理 1.环境准备 2.Bean的作用范围 3.Bean的生命周期 4.注解开发依赖…...

1 Unix基础知识

1.1 登录 1.1 登录名 登录Unix系统时,要先输入登录名,然后再输入口令。系统再其口令文件(/etc/password文件)查看登录名。口令文件中的登录项由7个以冒号分隔的字段组成:登录名,加密口令,数字用…...

【翻译一下官方文档】认识uniCloud云数据库(基础篇)

我将用图文的形式,把市面上优质的课程加以自己的理解,详细的把:创建一个uniCloud的应用,其中的每一步记录出来,方便大家写项目中,做到哪一步不会了,可以轻松翻看文章进行查阅。(此文…...

全局解释器锁 GIL

问题 你已经听说过全局解释器锁 GIL,担心它会影响到多线程程序的执行性能。 解决方案 尽管 Python 完全支持多线程编程,但是解释器的 C 语言实现部分在完全并行执行时并不是线程安全的。 实际上,解释器被一个全局解释器锁保护着&#xff…...

github 下载文件加速 https://moeyy.cn/gh-proxy/

GitHub文件链接带不带协议头都可以,支持release、archive以及文件,右键复制出来的链接都是符合标准的。 注意,不支持项目文件夹,请使用Git。 分支源码:https://github.moeyy.xyz/https://github.com/moeyy/project/arc…...

第五章 资源包使用

游戏开发中会大量使用模型文件,图片文件,这些资源都需要事先导入到项目中去。导入的方式非常简单,将这些文件直接复制到项目中的Assets目录下即可。Unity 会在文件添加到 Assets 文件夹时自动检测到这些文件并同步显示在Project视图中。 Uni…...

Linux od命令

Linux od命令用于输出文件内容。 od指令会读取所给予的文件的内容&#xff0c;并将其内容以八进制字码呈现出来。 语法 od [-abcdfhilovx][-A <字码基数>][-j <字符数目>][-N <字符数目>][-s <字符串字符数>][-t <输出格式>][-w <每列字符…...

【15】SCI易中期刊推荐——电子电气 | 仪器仪表(中科院4区)

💖💖>>>加勒比海带<<<💖💖 🍀🍀>>>【YOLO魔法搭配&论文投稿咨询】<<<🍀🍀 ✨✨>>>学习交流 | 温澜潮生 | 合作共赢 | 共同进步<<<✨✨ 📚📚>>>人工智能 | 计算机视觉 | 深度学习Tr…...

基于PaddleServing的串联部署 ocr 识别模型

要点&#xff1a; 使用paddleserving服务 1 首先需要安装PaddleServing部署相关的环境 PaddleServing是PaddlePaddle推出的一种高性能、易扩展、高可用的机器学习服务框架。PaddleOCR中使用PaddleServing主要是为了将训练好的OCR模型部署到线上环境&#xff0c;提供API服务&a…...

java OutputStream学习

1.概要 OutputStream位于java.io&#xff0c;它在Java 实现的IO类库中是一个很基础的抽象类。在层级上&#xff0c;是所有字节输出流类的父类&#xff0c;在功能上&#xff0c;表示接受字节并把它们输出。 2.实现类及子类简介 OutputStream有诸多子类&#xff1a; ByteAr…...

java 上传文件生成二进制流文件

最近在项目中遇到一个问题&#xff1a;需要将上传的文件生成输出流&#xff0c;然后将输出流转换为输入流上传到oss。 -------------------------------------------导出代码实现---------------------------------------------------------- ByteArrayOutputStream baos nu…...

质量小议22 -- 多少分合适

60分万岁~&#xff1f;&#xff1f;&#xff1f;&#xff01;&#xff01;&#xff01; 如果用分数评价质量&#xff0c;多少分合适&#xff1f;60&#xff0c;70&#xff0c;80...还是100&#xff0c;或者 120 对于质量的提升&#xff0c;是雪中送炭&#xff0c;还是锦上添…...

变频器参数设定说明

使用默贝克MT110-0R4-S2B实现下面的练习题&#xff1a; 1、先恢复出厂设置&#xff0c;再输入电机参数&#xff0c;选择静态调谐 2、两种运行模式&#xff1a;多段速&#xff08;8段&#xff09;和简易PLC&#xff08;4段&#xff09; 3、面板启停&#xff0c;运行模式通过外部…...

实用调试技巧

目录&#xff1a; 1.什么是bug&#xff1f; 2.调试是什么&#xff1f;有多重要&#xff1f; 3.debug和release的介绍 4.Windows环境调试介绍 5.一些调试的实例 6.如何写出好(易于调试)的代码 7.编程常见的错误 1.什么是bug&#xff1f; bug--->臭虫、虫子。 为什么含…...

谁是液冷行业真龙头?疯狂的液冷技术!

“人工智能领域AIGC”、“ChatGPT”、“数据特区”、“东数西算”、“数据中心”&#xff0c;可以说是2023年最热的概念&#xff0c;算力提升的背后&#xff0c;处理器的功耗越来越高&#xff0c;想发挥出处理器的最高性能&#xff0c;需要更高的散热效率。 算力井喷之下&…...

自动化运维工具之Ansible

目录 一、自动化运维 1、通过xshell自动化运维 2、Ansible简介 3、Ansible特点及优势 4、Ansible核心程序 5、Ansible工作原理及流程 6、部署Ansible自动化运维工具 7、Ansible常用模块 (1) ansible命令行模块 (2) command模块 (3) shell模块 (4) cron模块 (5) us…...