当前位置: 首页 > news >正文

建设网站论文/企点客服

建设网站论文,企点客服,怎么下载四川人社app,郑州软件开发外包重要性采样(importance sampling)是一种用于估计概率密度函数期望值的常用蒙特卡罗积分方法。其基本思想是利用一个已知的概率密度函数来生成样本,从而近似计算另一个概率密度函数的期望值。 想从复杂概率分布中采样的一个主要原因是能够使用…

重要性采样(importance sampling)是一种用于估计概率密度函数期望值的常用蒙特卡罗积分方法。其基本思想是利用一个已知的概率密度函数来生成样本,从而近似计算另一个概率密度函数的期望值。

想从复杂概率分布中采样的一个主要原因是能够使用式(11.1)计算期望。重要采样(importance sampling)的方法提供了直接近似期望的框架,但是它本身并没有提供从概率分布 p ( z ) p(z) p(z)中采样的方法,也就是我们无法从式(11.1)直接过渡到(11.2)
E [ f ] = ∫ f ( z ) p ( z ) d z (11.1) \mathbb{E}[f] = \int f(z)p(z)dz \tag{11.1} E[f]=f(z)p(z)dz(11.1) f ^ = 1 L ∑ l = 1 L f ( z ( l ) ) (11.2) \hat{f} = \frac{1}{L}\sum\limits_{l=1}^L f(z^{(l)}) \tag{11.2} f^=L1l=1Lf(z(l))(11.2)公式(11.2)给出的期望的有限和近似依赖于能够从概率分布 p ( z ) p(z) p(z)中采样。然而,假设直接从 p ( z ) p(z) p(z)中采样无法完成,但是对于任意给定的 z z z值,我们可以很容易地计算 p ( z ) p(z) p(z)。一种简单的计算期望的方法是将 z z z空间离散化为均匀的格点,将被积函数使用求和的方式计算,形式为
E [ f ] ≃ ∑ l = 1 L p ( z ( l ) ) f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lp(z^{(l)})f(z^{(l)}) E[f]l=1Lp(z(l))f(z(l))这种方法的一个明显的问题是求和式中的项的数量随着 z z z的维度指数增长。此外,正如我们已经注意到的那样,我们感兴趣的概率分布通常将它们的大部分质量限制在 z z z空间的一个很小的区域,因此均匀地采样非常低效,因为在高维的问题中,只有非常小的一部分样本会对求和式产生巨大的贡献。我们希望从 p ( z ) p(z) p(z)的值较大的区域中采样,或理想情况下,从 p ( z ) f ( z ) p(z)f(z) p(z)f(z)的值较大的区域中采样。

与拒绝采样的情形相同,重要采样基于的是对提议分布 q ( z ) q(z) q(z)的使用,我们很容易从提议分布中采样,如下图所示:

重要采样解决的是计算函数 f ( z ) f(z) f(z)关于分布 p ( z ) p(z) p(z)的期望的问题,其中,从 p ( z ) p(z) p(z)中直接采样比较困难。相反,样本 z ( l ) {z^{(l)}} z(l)从一个简单的概率分布 q ( z ) q(z) q(z)中抽取,求和式中的对应项的权值为 p ( z ( l ) ) / q ( z ( l ) ) p(z^{(l)})/q(z^{(l)}) p(z(l))/q(z(l)),这样就可以还原到从 p ( z ) p(z) p(z)中取样。

上述过程中的式子,我们可以通过 q ( z ) q(z) q(z)中的样本 { z ( l ) } \{z^{(l)}\} {z(l)}的有限和的形式来表示期望
E = ∫ f ( z ) p ( z ) d z = ∫ f ( z ) p ( z ) q ( z ) q ( z ) d z ≃ 1 L ∑ l = 1 L p ( z ( l ) ) q ( z ( l ) ) f ( z ( l ) ) \mathbb{E} = \int f(z)p(z)dz \ = \int f(z)\frac{p(z)}{q(z)}q(z)dz \ \simeq \frac{1}{L}\sum\limits_{l=1}^L\frac{p(z^{(l)})}{q(z^{(l)})}f(z^{(l)}) E=f(z)p(z)dz =f(z)q(z)p(z)q(z)dz L1l=1Lq(z(l))p(z(l))f(z(l))其中 r l = p ( z ( l ) ) / q ( z ( l ) ) r_l = p(z^{(l)}) / q(z^{(l)}) rl=p(z(l))/q(z(l))被称为重要性权重(importance weights),修正了由于从错误的概率分布 q ( z ) q(z) q(z)中采样引入的偏差。

对于上述过程,举个栗子:

我们的待计算函数为 h ( x ) = e − 2 ∣ x − 5 ∣ h(x)=e^{-2|x-5|} h(x)=e2∣x5∣,待采样分布为 p ( x ) = 1 10 , x ∼ u ( 0 , 10 ) p(x)=\dfrac{1}{10} ,x \sim\mathcal{u}(0,10) p(x)=101,xu(0,10),从 h ( x ) h(x) h(x)的图像中明显可以看出,在中间部分的 h ( x ) p ( x ) h(x)p(x) h(x)p(x)对期望贡献较大,而两边几乎可以忽略不计,所以此时使用均匀分布采样并不合理。

image-20230428164718557

基于此,我们引入了新的采样分布函数 q ( x ) = 1 2 π e − ( x − 5 ) 2 2 q(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{(x-5)^2}{2}} q(x)=2π 1e2(x5)2

在这里插入图片描述
这使得在 h ( x ) h(x) h(x)较大的位置取值更多,需要的采样点更少。

而更常见的情形是,概率分布 p p p的计算结果没有标准化,也就是 p ( z ) = p ~ ( z ) / Z p p(z) = \tilde{p}(z) / Z_p p(z)=p~(z)/Zp中我们只知道 p ~ ( z ) \tilde{p}(z) p~(z),其中 p ~ ( z ) \tilde{p}(z) p~(z)可以很容易地由 z z z计算出来(可能没有函数表达式),而 Z p Z_p Zp未知( p ~ ( z ) \tilde{p}(z) p~(z)无法积分算)。类似的,我们可能希望使用重要采样分布 q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq中的 q ~ ( z ) \tilde{q}(z) q~(z),它具有相同的性质。于是我们得到:
E [ f ] = ∫ f ( z ) p ( z ) d z = Z q Z p ∫ f ( z ) p ~ ( z ) q ~ ( z ) q ( z ) d z ≃ Z q Z p 1 L ∑ l = 1 L r ~ l f ( z ( l ) ) \mathbb{E}[f] = \int f(z)p(z)dz \ = \frac{Z_q}{Z_p}\int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{Z_q}{Z_p}\frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_lf(z^{(l)}) E[f]=f(z)p(z)dz =ZpZqf(z)q~(z)p~(z)q(z)dz ZpZqL1l=1Lr~lf(z(l))
其中 r ~ l = p ~ ( z ( l ) ) / q ~ ( z ( l ) ) \tilde{r}_l = \tilde{p}(z^{(l)}) / \tilde{q}(z^{(l)}) r~l=p~(z(l))/q~(z(l))

我们还可以使用同样的样本集合来计算比值 Z p / Z q Z_p / Z_q Zp/Zq,结果为:
Z p Z q = 1 Z q ∫ p ~ ( z ) d z = ∫ p ~ ( z ) q ~ ( z ) q ( z ) d z ≃ 1 L ∑ l = 1 L r ~ l \frac{Z_p}{Z_q} = \frac{1}{Z_q}\int\tilde{p}(z)dz = \int\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_l ZqZp=Zq1p~(z)dz=q~(z)p~(z)q(z)dz L1l=1Lr~l

第一个等式中 Z p Z_p Zp ∫ p ~ ( z ) d z \int\tilde{p}(z)dz p~(z)dz等价计算了出来,第二个等式中 Z q Z_q Zq q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq替代

因此:
E [ f ] ≃ ∑ l = 1 L w l f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lw_lf(z^{(l)}) E[f]l=1Lwlf(z(l))其中: w l = r ~ l ∑ m r ~ m = p ~ ( z ( l ) ) / q ( z ( l ) ) ∑ m p ~ ( z ( l ) ) / q ( z ( l ) ) w_l = \frac{\tilde{r}_l}{\sum_m\tilde{r}_m} = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m\tilde{p}(z^{(l)})/q(z^{(l)})} wl=mr~mr~l=mp~(z(l))/q(z(l))p~(z(l))/q(z(l))
这也就是我们最终要找样本点计算的式子
最终,我们达到了“利用一个已知的概率密度函数 q ( z ) q(z) q(z)来生成样本,从而近似计算另一个概率密度函数的期望值 E [ f ] = ∫ f ( z ) p ( z ) d z \mathbb{E}[f] = \int f(z)p(z)dz E[f]=f(z)p(z)dz”这一目的。

参考:

  1. 【PRML】【模式识别和机器学习】【从零开始的公式推导】11.1.4重要性采样 11.1.5采样-重要性-重采样 11.1.6采样与EM算法
  2. Importance Sampling - VISUALLY EXPLAINED with EXAMPLES!

相关文章:

【机器学习分支】重要性采样(Importance sampling)学习笔记

重要性采样(importance sampling)是一种用于估计概率密度函数期望值的常用蒙特卡罗积分方法。其基本思想是利用一个已知的概率密度函数来生成样本,从而近似计算另一个概率密度函数的期望值。 想从复杂概率分布中采样的一个主要原因是能够使用…...

三角回文数+123

三角回文数:用户登录 问题描述 对于正整数 n, 如果存在正整数 k 使得 n123⋯kk(k1)/2​, 则 n 称为三角数。例如, 66066 是一个三角数, 因为 66066123⋯363 。 如果一个整数从左到右读出所有数位上的数字, 与从右到左读出所有数位 上的数字是一样的, 则称这个数为…...

JAVA常用的异步处理方法总结

前言 在java项目开发过程中经常会遇到比较耗时的任务,通常是将这些任务做成异步操作,在java中实现异步操作有很多方法,本文主要总结一些常用的处理方法。为了简化,我们就拿一个实际的案例,再用每种方法去实现&#xf…...

GitLab统计代码量

gitlab官方文档:https://docs.gitlab.com/ee/api/index.html 1、生成密钥 登录gitlab,编辑个人资料,设置访问令牌 2、获取当前用户所有可见的项目 接口地址 GET请求 http://gitlab访问地址/api/v4/projects?private_tokenxxx 返回参数 …...

Linux TCP MIB统计汇总

概述 在 linux > 4.7 才将所有TCP丢包收敛到 函数 tcp_drop 中 指标详解 cat /proc/net/netstat 格式化命令 cat /proc/net/netstat | awk (f0) {name$1; i2; while ( i<NF) {n[i] $i; i }; f1; next} (f1){ i2; while ( i<NF){ printf "%s%s %d\n", …...

记录 docker linux部署jar

第一步 web sso user admin 中yml文件还原到阿里mysql数据库 第二步 各个jar进行打包处理 第三步 正式服务器的Jar备份 第四步 拉取以上jar包 到正式服务器中 第五步 查看 docker images 其中 web_service 1.0.2是上一个版本 上一个版本build 镜像命令是这样的&#xff08;需…...

【Linux】教你用进程替换制作一个简单的Shell解释器

本章的代码可以访问这里获取。 由于程序代码是一体的&#xff0c;本章在分开讲解各部分的实现时&#xff0c;代码可能有些跳跃&#xff0c;建议在讲解各部分实现后看一下源代码方便理解程序。 制作一个简单的Shell解释器 一、观察Shell的运行状态二、简单的Shell解释器制作原理…...

onMeasure里如何重置只有1个子view一行满屏, 若有多个自适应一行

onMeasure里如何重置只有1个子view一行满屏, 若有多个自适应一行 可以尝试在 onMeasure 方法中重写 measureChildWithMargins 或 measureChild 方法来实现这个需求。 对于只有一个字的 View,我们可以把它的宽度设为屏幕宽度,高度设为最大高度,这样这个 View 就会占满一整行…...

Postman创建项目 对接口发起请求处理

查看本文之前 您需要理解了解 Postman 的几个简单工作区 如果还没有掌握 可以先查看我的文章 简单认识 Postman界面操作 那么 掌握之后 我们就可以正式来开启我们的接口测试 我们先选择 Collections 我们点上面这个加号 多拉一个项目出来 然后 我们选我们刚加号点出来的项目…...

在Vue3项目中js-cookie库的使用

文章目录 前言1.安装js-cookie库2.引入、使用js-cookie库 前言 今天分享一下在Vue3项目中引入使用js-cookie。 1.安装js-cookie库 js-cookie官网 安装js-cookie&#xff0c;输入 npm i js-cookie安装完成可以在package.json中看到&#xff1a; 安装以后&#xff0c;就可…...

【论文笔记】Attention和Visual Transformer

Attention和Visual Transformer Attention和Transformer为什么需要AttentionAttention机制Multi-head AttentionSelf Multi-head Attention&#xff0c;SMA TransformerVisual Transformer&#xff0c;ViT Attention和Transformer Attention机制在相当早的时间就已经被提出了&…...

独立IP服务器和共享IP服务器有什么区别

在选择一个合适的服务器时&#xff0c;最常见的选择是共享IP服务器和独立IP服务器。尽管两者看起来很相似&#xff0c;但它们有着很大的不同。本文将详细介绍共享IP服务器和独立IP服务器的不同之处&#xff0c;以及如何选择适合您需求的服务器。 一、什么是共享IP服务器? 共享…...

Java8

Java8 &#xff08;一&#xff09;、双列集合&#xff08;二&#xff09;、Map集合常用api&#xff08;三&#xff09;、Map集合的遍历方式&#xff08;四&#xff09;、HashMap&#xff08;五&#xff09;、LinkedHashMap&#xff08;六&#xff09;、TreeMap&#xff08;七&a…...

nn.conv1d的输入问题

Conv1d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue) in_channels(int) – 输入信号的通道。在文本分类中&#xff0c;即为词向量的维度out_channels(int) – 卷积产生的通道。有多少个out_channels&#xff0c;就需要多少个1维…...

js判断是否为null,undefined,NaN,空串或者空对象

js判断是否为null&#xff0c;undefined&#xff0c;NaN&#xff0c;空串或者空对象 这里写目录标题 js判断是否为null&#xff0c;undefined&#xff0c;NaN&#xff0c;空串或者空对象特殊值nullundefinedNaN空字符串&#xff08;""&#xff09;空对象&#xff08;…...

Java每日一练(20230501)

目录 1. 路径交叉 &#x1f31f;&#x1f31f; 2. 环形链表 &#x1f31f;&#x1f31f; 3. 被围绕的区域 &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏…...

从零开始学习Web自动化测试:如何使用Selenium和Python提高效率?

B站首推&#xff01;2023最详细自动化测试合集&#xff0c;小白皆可掌握&#xff0c;让测试变得简单、快捷、可靠https://www.bilibili.com/video/BV1ua4y1V7Db 目录 引言&#xff1a; 一、了解Web自动化测试的基本概念 二、选择Web自动化测试工具 三、学习Web自动化测试的…...

fastdfs环境搭建

安装包下载路径 libfastcommon下载地址&#xff1a;https://github.com/happyfish100/libfastcommon/releasesFastDFS下载地址&#xff1a;https://github.com/happyfish100/fastdfs/releasesfastdfs-nginx-module下载地址&#xff1a;https://github.com/happyfish100/fastdf…...

有什么牌子台灯性价比高?性价比最高的护眼台灯

由心感叹现在的孩子真不容易&#xff0c;学习压力比我们小时候大太多&#xff0c;特别是数学&#xff0c;不再是简单的计算&#xff0c;而更多的是培养学生其他思维方式&#xff0c;有时候我都觉得一年级数学题是不是超纲了。我女儿现在基本上都是晚上9点30左右上床睡觉&#x…...

信息系统项目管理师 第9章 项目范围管理

1.管理基础 1.产品范围和项目范围 产品范围:某项产品、服务或成果所具有的特征和功能。根据产品需求来衡量。 项目范围:包括产品范围&#xff0c;是为交付具有规定特性与功能的产品、服务或成果而必须完成的工作。项目管理计划来衡量 2.管理新实践 更加注重与商业分析师一起…...

【Android入门到项目实战-- 8.2】—— 使用HTTP协议访问网络

目录 一、使用HttpURLConnection 1、使用Android的HttpURLConnection步骤 1&#xff09;获取HttpURLConnection实例 2)设置HTTP请求使用的方法 3)定制HTTP请求&#xff0c;如连接超时、读取超时的毫秒数 4)调用getInputStream()方法获取返回的输入流 5)关闭HTTP连接 2、…...

Go官方指南(五)并发

Go 程 Go 程&#xff08;goroutine&#xff09;是由 Go 运行时管理的轻量级线程。 go f(x, y, z) 会启动一个新的 Go 程并执行 f(x, y, z) f, x, y 和 z 的求值发生在当前的 Go 程中&#xff0c;而 f 的执行发生在新的 Go 程中。 Go 程在相同的地址空间中运行&#xff0c…...

VS快捷键大全 | 掌握这些快捷键,助你调试快人一步

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…...

【刷题】203. 移除链表元素

203. 移除链表元素 一、题目描述二、示例三、实现方法1-找到前一个节点修改next指向方法2-不是val的尾插重构 总结 203. 移除链表元素 一、题目描述 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新…...

C++11学习- CPU多核与多线程、并行与并发

随着计算机编程频繁使用&#xff0c;关于CPU的处理性能的讨论从未停止过&#xff0c;由于我最近在学习多线程相关的知识&#xff0c;那么就来理一理CPU的核心问题。 一、线程与进程 业解释 线程是CPU调度和分配的基本单位&#xff0c;可以理解为CPU只看得到线程&#xff1b; …...

docker登录harbor、K8s拉取镜像报http: server gave HTTP response to HTTPS client

docker登录harbor、K8s拉取镜像报http: server gave HTTP response to HTTPS client 当搭建完docker私有仓库后&#xff0c;准备docker login http://ip:端口 登录时会包如下错误 当我们使用docker私有仓库中的镜像在K8s集群中部署应用时会包如下错误 以上错误根据报错信息可…...

Redis在linux下安装

1.下载安装包 redis官网: Download | Redis 2.解压 2.1在目录下解压压缩包 tar -zxvf redis-7.0.11.tar.gz 2.2将redis移至另一目录下并改名为redis mv redis-7.0.11 /usr/local/redis 3.编译 进入到redis目录下&#xff0c;make命令编译 [rootVM-24-15-centos local]# cd…...

这里有你想知道的那些卖家友好型跨境电商平台!

目前市面上的跨境电商平台千千万&#xff0c;想要找到那个最合适的平台其实不容易&#xff0c;而且合适这个定义也有很多不同标准。龙哥今天打算从其中一个标准展开&#xff0c;那就是对卖家的友好程度。我们要做的话可以优先选择一些对卖家友好的平台&#xff0c;无论是方便我…...

架构中如何建设共识

在互联网时代&#xff0c;我们面临着三个与沟通交流相关的重要挑战&#xff1a; 分布式研发&#xff1a;日常工作中相对隔离的微服务研发模式&#xff1b;沟通障碍&#xff1a;分散在全球或全国多地的研发团队&#xff0c;以及由此带来的语言、文化和沟通障碍&#xff1b;认知…...

力扣(LeetCode)1172. 餐盘栈(C++)

优先队列 解题思路&#xff1a;根据题意模拟。用数组存储无限数量的栈。重在实现 p u s h push push 和 p o p pop pop 操作。 对于 p u s h push push 操作&#xff0c;需要知道当前从左往右第一个空栈的下标。分两类讨论&#xff1a; ①所有栈都是满的&#xff0c;那么我…...