当前位置: 首页 > news >正文

Codeforces Round 867 (Div 3) 总结

文章目录

  • A
  • B
  • C
  • D
  • E

文章首发于我的个人博客:欢迎大佬们来逛逛

Dashboard - Codeforces Round 867 (Div. 3) - Codeforces

A

题目大意:有n个电视节目,每个电视节目占据一定的时间,并且具有一个娱乐值,一秒可以额换一次台,你需要在规定的时间内找出最大娱乐值的电视节目。(一个电视节目必须看完,意味着你的剩余时间必须大于这个电视节目的时间)

我们可以将自己的规定时间与电视节目进行枚举,相当于每次进行一次换台,如果我们的剩余时间大于电视节目所占据的时间,则每次记录一下娱乐值的最大值。


B

题目大意:给出一个序列,你可以任意删除其中的元素,规定序列中的最美值为序列中相邻两个元素的乘积的最大值,找出整个序列中的最美值。

由于可以删除元素,则我们就可以认为元素之间是无序的,因此我们可以进行排序,从小到大,然后进行遍历相邻两元素乘积最大值即可。


C

题目大意:在一个 n*n 的图形中,找出整个图形(包括内部和外部)的线的总长,每一段线长 1。

这是一道规律题:

  • n=4:容易得到 15 + 3 + 2*4 为 26
  • n=5:容易得到 24 + 3 + 2*5 为 37
  • n=6:容易得到 35 + 3 + 2*6 为 50

因此公式为:

a n s = n ∗ n − 1 + 3 + 2 ∗ n ans = n*n-1 + 3 + 2*n ans=nn1+3+2n


D

题目大意:寻找超级排列,所谓超级排列是指从 1到n 每个元素只出现一次,不能不出现,也不能重复出现。规定 b数组为 a数组的前缀和数组%n,如果 b数组为超级排列,那么a数组也是超级排列。因此给你一个 n,判断这个n能否构成一个超级排列。

  • 如果n是奇数,那么n的前缀和数组的最后一项一定是 n的倍数,同理 n-1项也一定是n的倍数
    • 例如:n=5: s = 1 3 6 10 15;则 10与15都是n的倍数,因此%n都为0,所以不是超级排列
    • n=1除外
  • 如果n是偶数,则不妨找规律:
    • n=6: 6 5 2 3 4 1,可以看作 n n-1 (n-1)。其中前两项是固定的,往后每两项都需要组成一个 n-1 ,因此 2+3 =5;4+1 =5,可以算出这样的排列一定是超级排列。
    • 第三项开始枚举 2 4 6 …. 对应为 n-1-2 n-1-4 n-1-6

E

题目大意:一个字符串,你可以交换任意两个位置元素,使得这个字符串每一个字符位置都不回文,即s[i] ≠ s[n-i-1] (i≥0) ,求出是否可以经过操作得到,输出交换次数,否则输出 -1

  • 无解:
    • 观察到奇数个数得字符一定是无解的,因为会多一个字符无法匹配。
    • 如果一个字符出现次数大于数组总长度的一半,则一定会出现一半全是这个字符,另一半至少出现一个这个字符,因此一定有重复,无解。
  • 有解:
    • 左半边记录不满足条件时的该元素出现的次数,相邻两个元素可以进行一次交换,因此抵消为一次,直到记录的不满足条件的元素的次数为0,使用multiset维护很方便!

相关文章:

Codeforces Round 867 (Div 3) 总结

文章目录 ABCDE 文章首发于我的个人博客:欢迎大佬们来逛逛 Dashboard - Codeforces Round 867 (Div. 3) - Codeforces A 题目大意:有n个电视节目,每个电视节目占据一定的时间,并且具有一个娱乐值,一秒可以额换一次台…...

vue修饰符的使用

事件修饰符: 在处理事件时调用 event.preventDefault() 或 event.stopPropagation() 是很常见的。尽管我们可以直接在方法内调用,但如果方法能更专注于数据逻辑而不用去处理 DOM 事件的细节会更好。 为解决这一问题,Vue 为 v-on 提供了事件…...

2023年五一数学建模 B 题过程与结果

文章目录 第一问第二问数据时序分析Auto-ARIMA第二问求解解的情况A->Q:D-> AQ-V总快递数 第三问第四问遗传算法求解 第五问SARIMA 模型拟合季节性规律 第一问 见 2023 年 五一杯 B 题过程 代码(第一问) 第二问 第二问考虑是一个时序预测问题&a…...

搞懂 API ,API 中 URI 设计规范分享

API(Application Programming Interface)是现代软件开发中的一项关键技术,它为不同应用程序间提供了数据和功能交互的标准化方式。而 URI(Uniform Resource Identifier)作为 API 中的重要部分,其规范和良好…...

【DarkLabel】使用教程(标注MOT数据集)

DarkLabel 使用教程 功能部分 Open video 第 2 处的内容为数据集类型。例如:VOC、COCO、MOT、YOLO等。 第 3 处的内容为标签名称。 可在 darklabel.yml 中修改 classes_set。例如:classes_set: "mot_classes" 第 4 处的内容为两种跟踪方法…...

Python3 迭代器与生成器

Python3 中的迭代器和生成器是 Python 编程中非常重要的概念,它们可以帮助我们更高效地处理数据和管理内存。下面分别介绍一下迭代器和生成器的概念和用法。 ## 迭代器 迭代器是一个可以遍历一个容器(如列表或元组)中的所有元素的对象&…...

C++基础 类的自动转换和强制类型转换

参考 C Primer Plus (第6版) 类自动转换 接受一个参数的构造函数允许使用赋值语法将对象初始化一个值 Classname object value; 等价于 ClassName object(value); 等价于 ClassName object ClassName(value); 只有接受一个参数的构造函数才能作为转换构造函数(某类型->…...

MySQL索引的底层实现原理

索引的底层实现原理 数据库索引是存储在磁盘上的,当数据量大时,就不能把整个索引全部加载到内存了,只能逐一加载每一个磁盘块(对应索引树的节点),索引树越低,越“矮胖”,磁盘IO次数…...

Linux 更新

Linux权限系统 01 只读 1 10 只写 2 100 只执行 4 11 可读写 3 101 可读执行 5 110 可写执行 6 111 可读写执行 7...

华为OD机试 - 端口合并(Python)

题目描述 有M个端口组(1<=M<=10), 每个端口组是长度为N的整数数组(1<=N<=100), 如果端口组间存在2个及以上不同端口相同,则认为这2个端口组互相关联,可以合并。 输入描述 第一行输入端口组个数M,再输入M行,每行逗号分割,代表端口组。 备注:端口组内数字…...

分部积分法习题

前置知识&#xff1a;分部积分法 例题 计算积分 I n ∫ [ ( x a ) 2 b 2 ] − k d x ( n ≥ 1 ) I_n\int [(xa)^2b^2]^{-k}dx \quad(n\geq 1) In​∫[(xa)2b2]−kdx(n≥1) 解&#xff1a; \qquad 用分部积分法&#xff0c;对任何自然数 k ≥ 1 k\geq 1 k≥1&#xff0c;…...

C++—非递归【循环】遍历二叉树(前序,中序,后序)思路讲解+代码实现

非递归遍历二叉树 前序中序后序 接下来我们在研究如何使用循环实现遍历二叉树时&#xff0c;以下面的二叉树为例&#xff1a; 在下文的讲解中&#xff0c;不对如何构建这颗二叉树做讲解&#xff0c;直接给出代码&#xff0c;如果有不懂的地方欢迎私信我。 文章中的完整源代码链…...

前端002_初始化项目

1、命名和启动项目 将目录名 vue-admin-template-master 重命名为 db-manager-system 将 db-manager-system/package.json 中的 name 值改为 db-manager-system {"name": "db-manager-system","version": "1.0.1","descriptio…...

组合设计模式

组合模式 组合模式定义使用场景1、文件系统的目录结构&#xff1a;2、组织架构图&#xff1a;3、菜单和菜单项&#xff1a;4、使用场景总结&#xff1a; 角色定义Component 抽象构件角色:Leaf 叶子构件:Composite 树枝构件: 需求背景代码实现Component&#xff08;抽象构件角色…...

【MySQL】多表查询

上一篇介绍了外键约束,外键约束是用于连接两张数据表的,所以在此基础上就有了多表查询 之前的查询都是单表查询,这里我们会将多个数据表的数据结果返回在一张表上 文章目录 1.多表关系2.多表查询2.1 多表查询分类2.2 内连接2.3 外连接2.4 自连接2.5 联合查询2.6子查询 1.多表关…...

关于在线帮助中心你需要思考以下几个问题

搭建帮助中心是大多数企业都在尝试做的事情&#xff0c;它的重要性对于企业来说不言而喻。现在对于企业来说&#xff0c;搭建帮助中心或许不是什么难事&#xff0c;但是关于帮助中心&#xff0c;有几个问题需要思考清楚&#xff0c;才能让其发挥最大的价值。 一、如何让用户养成…...

基于FPGA+JESD204B 时钟双通道 6.4GSPS 高速数据采集模块设计(一)总体方案

本章将根据高速数据采集指标要求&#xff0c;分析并确定高速数据采集模块的设计方 案&#xff0c;由此分析数据存储需求及存储速度需求给出高速大容量数据存储方案&#xff0c;完成 双通道高速数据采集模块总体设计方案&#xff0c;并综合采集、存储方案及 AXIe 接口需求 …...

二、Spring Cloud Alibaba环境搭建

一、依赖环境 SpringCloud Alibaba 依赖 Java 环境来运行。还需要为此配置 Maven环境&#xff0c;请确保是在以下版本环境中安装使用。 64 bit JDK 1.8;Maven 3.2.x。 spring-cloud-alibaba相关网址&#xff1a; 地址&#xff1a;https://github.com/alibaba/spring-cloud-…...

瑞萨e2studio(24)----电容触摸配置(1)

瑞萨e2studio.24--电容触摸配置1 概述硬件准备新建工程工程模板保存工程路径芯片配置工程模板选择时钟配置添加TOUCH驱动配置CapTouch开启调优界面启动 CapTouch 调优通过电容触摸点亮LED 概述 这篇文档将创建一个使用 e2 studio 集成 QE 的电容式触摸应用示例&#xff0c;通…...

数据开发常见问题

目录 环境变量过多或者参数值过长时&#xff0c;为什么提交作业失败&#xff1f; 为什么Shell作业状态和相关的YARN Application状态不一致&#xff1f; 创建作业和执行计划的区别是什么&#xff1f; 如何查看作业运行记录&#xff1f; 如何在OSS上查看日志&#xff1f; 读…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...