【算法】一文彻底搞懂ZAB算法
文章目录
- 什么是ZAB 算法?
- 深入ZAB算法
- 1. 消息广播
- 两阶段提交
- ZAB消息广播过程
- 2. 崩溃恢复
- 选举参数
- 选举流程
- ZAB算法需要解决的两大问题
- 1. 已经被处理的消息不能丢
- 2. 被丢弃的消息不能再次出现
最近需要设计一个分布式系统,需要一个中间件来存储共享的信息,来保证多个系统之间的数据一致性,调研了两个主流框架Zookeeper和ETCD,发现都能满足我们的系统需求。
其中ETCD是K8s中采用的分布式存储,而其底层采用了RAFT算法来保证一致性,之前已经详细分析了Raft算法的原理,今天主要仔细分析下Zookeeper的底层算法-ZAB算法。
什么是ZAB 算法?
ZAB的全称是 Zookeeper Atomic Broadcast (Zookeeper原子广播)。Zookeeper 是通过 Zab 算法来保证分布式事务的最终一致性。
-
Zab协议是为分布式协调服务Zookeeper专门设计的一种 支持崩溃恢复 的 原子广播协议 ,是Zookeeper保证数据一致性的核心算法。Zab借鉴了Paxos算法,但又不像Paxos那样,是一种通用的分布式一致性算法。它是特别为Zookeeper设计的支持崩溃恢复的原子广播协议。
-
在Zookeeper中主要依赖Zab协议来实现数据一致性,基于该协议,zk实现了一种主备模型(即Leader和Follower模型)的系统架构来保证集群中各个副本之间数据的一致性。 这里的主备系统架构模型,就是指只有一台客户端(Leader)负责处理外部的写事务请求,然后Leader客户端将数据同步到其他Follower节点。
客户端的读取流程:客户端会随机的链接到 zookeeper 集群中的一个节点,如果是读请求,就直接从当前节点中读取数据;如果是写请求,那么节点就会向 Leader 提交事务,Leader 接收到事务提交,会广播该事务,只要超过半数节点写入成功,该事务就会被提交。
深入ZAB算法
ZAB算法分为两大块内容,消息广播和崩溃恢复。
-
消息广播(boardcast):Zab 协议中,所有的写请求都由 leader 来处理。正常工作状态下,leader 接收请求并通过广播协议来处理。
-
崩溃恢复(recovery):当服务初次启动,或者 leader 节点挂了,系统就会进入恢复模式,直到选出了有合法数量 follower 的新 leader,然后新 leader 负责将整个系统同步到最新状态。
1. 消息广播
消息广播的过程实际上是一个简化的两阶段提交过程,这里对两阶段提交做一个简单的介绍。
两阶段提交
两阶段提交算法本身是一致强一致性算法,适合用作数据库的分布式事务,其实数据库的经常用到的TCC本身就是一种2PC。
下面以MySQL中对数据库的修改过程,来介绍下两阶段提交的具体流程,在MySQL中对一条数据的修改操作首先写undo日志,记录的数据原来的样子,接下来执行事务修改操作,把数据写到redo日志里面,万一捅娄子,事务失败了,可从undo里面恢复数据。数据库通过undo与redo能保证数据的强一致性。
-
首先第一阶段叫准备节点,事务的请求都发送给一个个的资源,这里的资源可以是数据库,也可以是其他支持事务的框架,他们会分别执行自己的事务,写日志到undo与redo,但是不提交事务。
-
当事务管理器收到了所以资源的反馈,事务都执行没报错后,事务管理器再发送commit指令让资源把事务提交,一旦发现任何一个资源在准备阶段没有执行成功,事务管理器会发送rollback,让所有的资源都回滚。这就是2pc,非常简单。
说他是强一致性的是他需要保证任何一个资源都成功,整个分布式事务才成功。
优点:原理简单,实现方便
缺点:同步阻塞,单点问题,数据不一致,容错性不好
- 同步阻塞:在二阶段提交的过程中,所有的节点都在等待其他节点的响应,无法进行其他操作。这种同步阻塞极大的限制了分布式系统的性能。
- 单点问题:协调者在整个二阶段提交过程中很重要,如果协调者在提交阶段出现问题,那么整个流程将无法运转。更重要的是,其他参与者将会处于一直锁定事务资源的状态中,而无法继续完成事务操作。
- 数据不一致:假设当协调者向所有的参与者发送commit请求之后,发生了局部网络异常,或者是协调者在尚未发送完所有 commit请求之前自身发生了崩溃,导致最终只有部分参与者收到了commit请求。这将导致严重的数据不一致问题。
- 容错性不好:二阶段提交协议没有设计较为完善的容错机制,任意一个节点是失败都会导致整个事务的失败。
ZAB消息广播过程
Zookeeper集群中,存在以下三种角色的节点:
Leader:Zookeeper集群的核心角色,在集群启动或崩溃恢复中通过Follower参与选举产生,为客户端提供读写服务,并对事务请求进行处理。
Follower:Zookeeper集群的核心角色,在集群启动或崩溃恢复中参加选举,没有被选上就是这个角色,为客户端提供读取服务,也就是处理非事务请求,Follower不能处理事务请求,对于收到的事务请求会转发给Leader。
Observer:观察者角色,不参加选举,为客户端提供读取服务,处理非事务请求,对于收到的事务请求会转发给Leader。使用Observer的目的是为了扩展系统,提高读取性能。
-
Leader 接收到消息请求后,将消息赋予一个全局唯一的 64 位自增 id,叫做:zxid,通过 zxid 的大小比较即可实现因果有序这一特性。
-
Leader 通过先进先出队列(通过 TCP 协议来实现,以此实现了全局有序这一特性)将带有 zxid 的消息作为一个提案(proposal)分发给所有 follower。
-
当 follower 接收到 proposal,先将 proposal 写到硬盘,写硬盘成功后再向 leader 回一个 ACK。
-
当 leader 接收到合法数量的 ACKs 后,leader 就向所有 follower 发送 COMMIT 命令,同时会在本地执行该消息。
当 follower 收到消息的 COMMIT 命令时,就会执行该消息。
相比于完整的二阶段提交,Zab 协议最大的区别就是不能终止事务,follower 要么回 ACK 给 leader,要么抛弃 leader,在某一时刻,leader 的状态与 follower 的状态很可能不一致,因此它不能处理 leader 挂掉的情况,所以 Zab 协议引入了恢复模式来处理这一问题。
从另一角度看,正因为 Zab 的广播过程不需要终止事务,也就是说不需要所有 follower 都返回 ACK 才能进行 COMMIT,而是只需要合法数量(2n+1 台服务器中的 n+1 台) 的follower,也提升了整体的性能。
Leader 服务器与每一个 Follower 服务器之间都维护了一个单独的 FIFO 消息队列进行收发消息,使用队列消息可以做到异步解耦。
Leader 和 Follower 之间只需要往队列中发消息即可。如果使用同步的方式会引起阻塞,性能要下降很多。
2. 崩溃恢复
崩溃恢复的主要任务就是选举Leader(Leader Election),Leader选举分两个场景:
- Zookeeper服务器启动时Leader选举。
- Zookeeper集群运行过程中Leader崩溃后的Leader选举。
选举参数
在介绍选举流程之前,需要介绍几个参数,
- myid: 服务器ID,这个是在安装Zookeeper时配置的,myid越大,该服务器在选举中被选为Leader的优先级会越大。ZAB算法中通过myid来规避了多个节点可能有相同zxid问题,注意可以对比之前的Raft算法,Raft算法中通过随机的timeout来规避多个节点可能同时成为Leader的问题。
- zxid: 事务ID,这个是由Zookeeper集群中的Leader节点进行Proposal时生成的全局唯一的事务ID,由于只有Leader才能进行Proposal,所以这个zxid很容易做到全局唯一且自增。因为Follower没有生成zxid的权限。zxid越大,表示当前节点上提交成功了最新的事务,这也是为什么在崩溃恢复的时候,需要优先考虑zxid的原因。
- epoch: 投票轮次,每完成一次Leader选举的投票,当前Leader节点的epoch会增加一次。在没有Leader时,本轮此的epoch会保持不变。
另外在选举的过程中,每个节点的当前状态会在以下几种状态之中进行转变。
- LOOKING: 竞选状态。
- FOLLOWING: 随从状态,同步Leader 状态,参与Leader选举的投票过程。
- OBSERVING: 观察状态,同步Leader 状态,不参与Leader选举的投票过程。
- LEADING: 领导者状态。
选举流程
选举的流程如下:
- 每个Server会发出一个投票,第一次都是投自己。投票信息:(myid,ZXID)
- 收集来自各个服务器的投票
- 处理投票并重新投票,处理逻辑:优先比较ZXID,然后比较myid
- 统计投票,只要超过半数的机器接收到同样的投票信息,就可以确定leader
- 改变服务器状态,进入正常的消息广播流程。
ZAB算法需要解决的两大问题
1. 已经被处理的消息不能丢
这一情况会出现在以下场景:当 leader 收到合法数量 follower 的 ACKs 后,就向各个 follower 广播 COMMIT
命令,同时也会在本地执行 COMMIT 并向连接的客户端返回「成功」。但是如果在各个 follower 在收到 COMMIT 命令前
leader 就挂了,导致剩下的服务器并没有执行都这条消息。
为了实现已经被处理的消息不能丢这个目的,Zab 的恢复模式使用了以下的策略:
- 选举拥有 proposal 最大值(即 zxid 最大) 的节点作为新的 leader:由于所有提案被 COMMIT 之前必须有合法数量的 follower ACK,即必须有合法数量的服务器的事务日志上有该提案的 proposal,因此,只要有合法数量的节点正常工作,就必然有一个节点保存了所有被 COMMIT 的 proposal。 而在选举Leader的过程中,会比较zxid,因此选举出来的Leader必然会包含所有被COMMIT的proposal。
- 新的 leader 将自己事务日志中 proposal 但未 COMMIT 的消息处理。
新的 leader 与 follower 建立先进先出的队列, 先将自身有而 follower 没有的 proposal 发送给 follower,再将这些 proposal 的 COMMIT 命令发送给 follower,以保证所有的 follower 都保存了所有的 proposal、所有的 follower 都处理了所有的消息。
2. 被丢弃的消息不能再次出现
这一情况会出现在以下场景:当 leader 接收到消息请求生成 proposal 后就挂了,其他 follower 并没有收到此
proposal,因此经过恢复模式重新选了 leader 后,这条消息是被跳过的。 此时,之前挂了的 leader 重新启动并注册成了
follower,他保留了被跳过消息的 proposal 状态,与整个系统的状态是不一致的,需要将其删除。
Zab 通过巧妙的设计 zxid 来实现这一目的。一个 zxid 是64位,高 32 是纪元(epoch)编号,每经过一次 leader 选举产生一个新的 leader,新 leader 会将 epoch 号 +1。低 32 位是消息计数器,每接收到一条消息这个值 +1,新 leader 选举后这个值重置为 0。这样设计的好处是旧的 leader 挂了后重启,它不会被选举为 leader,因为此时它的 zxid 肯定小于当前的新 leader。当旧的 leader 作为 follower 接入新的 leader 后,新的 leader 会让它将所有的拥有旧的 epoch 号的未被 COMMIT 的 proposal 清除。
Zab 协议设计的优秀之处有两点,一是简化二阶段提交,提升了在正常工作情况下的性能;二是巧妙地利用率自增序列,简化了异常恢复的逻辑,也很好地保证了顺序处理这一特性。
相关文章:

【算法】一文彻底搞懂ZAB算法
文章目录 什么是ZAB 算法?深入ZAB算法1. 消息广播两阶段提交ZAB消息广播过程 2. 崩溃恢复选举参数选举流程 ZAB算法需要解决的两大问题1. 已经被处理的消息不能丢2. 被丢弃的消息不能再次出现 最近需要设计一个分布式系统,需要一个中间件来存储共享的信息…...

【软考高级】2022年系统分析师综合知识
1.( )是从系统的应用领域而不是从系统用户的特定需要中得出的,它们可以是新的功能性需求,或者是对已有功能性需求的约束,或者是陈述特定的计算必须遵守的要求。 A.功能性需求 B. 用户需求 C.产品需求 D.领域需求 2.对于安全关键系…...
关于AI未来的思考和应用场景
关于AI未来的思考和应用场景 AI(人工智能)是当今最热门的技术领域之一,它已经在多个领域产生了深远的影响,如医疗、金融、制造业等。未来,AI将继续发展,并在更多领域产生重要的影响。 AI的未来发展方向有…...

智慧城市规划数字化管理:数字孪生技术的创新应用
随着智能城市的不断发展,数字孪生技术也开始在智慧城市的建设中得到了广泛应用。数字孪生作为一种数字化的复制技术,它可以模拟真实世界中的实体和过程。 在城市规划方面,数字孪生可以帮助城市规划师更加直观地了解城市的整体规划和发展趋势&…...
开心档之C++ 指针
C 指针 学习 C 的指针既简单又有趣。通过指针,可以简化一些 C 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。所以,想要成为一名优秀的 C 程序员,学习指针是很有必要的。 正如您所知…...

零基础搭建私人影音媒体平台【远程访问Jellyfin播放器】
文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 转载自内网穿透工具的文章:零基础搭建私人影音媒体平台【远程访问Jelly…...

Abstract Expressionist
古董地图画集 10大最有名的抽象艺术家 抽象表现主义是现代许多不同艺术思想和表达流派中最奇特的艺术运动之一。这场运动开始从社会变革中涌现出来,恰逢第二次世界大战的最后几周和几个月。 这一次,来自世界各地的人们开始欢迎在经历了多年有史以来最致…...

【郭东白架构课 模块二:创造价值】24|节点四:如何减少语义上的分歧?
你好,我是郭东白。上节课我们通过一个篇幅比较长的电商案例,详细展示了为什么在架构活动中会出现语义分歧。同时也描述了,架构师在统一语义这个环节中所要创造的真正价值是什么。即,看到不同角色之间语境的差异,然后通…...

windows下免费本地部署类ChatGpt的国产ChatGLM-6B
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 Chat…...

flask+opencv+实时滤镜(原图、黑白、怀旧、素描)
简介:滤镜,主要是用来实现图像的各种特殊效果。图像滤镜用于改变图像的视觉效果,使其具有特定的风格。下面是这三种滤镜的详细说明: 1、黑白(Grayscale):黑白滤镜将彩色图像转换为灰度图像&…...
【SCI征稿】极速送审,中科院2区(TOP)计算机算法类SCI,数据库稳定检索19年
算法类: 检索年份:数据库稳定检索19年 自引率:14.50% 国人占比:22.78% 期刊简介:IF:8.0-9.0,JCR1区,中科院2区(TOP) 检索情况:SCI&EI 双…...

1992-2022年31省GDP、第一产业增加值、第二产业增加值 第三产业增加值
1992-2022年31省GDP、第一产业增加值、第二产业增加值 第三产业增加值 1、时间:1992-2022年 2、范围:包括31省 3、指标:省GDP、省第一产业增加值、省第二产业增加值、省第三产业增加值 4、缺失情况说明:无缺失 5、来源&#…...
100种思维模型之万物系统思维模型-57
前面我们介绍过 “万物联系思维模型” ,即万物之间存有各种各样的联系,在解决问题时要看到事物之间的连接,并找到关键的连接,继而快速的解决问题。 01 何谓万物系统思维模型 一、万物系统思维 人的思维习惯, 一…...
Java 中的包装类是什么?如何使用包装类来操作基本数据类型(二十二)
Java 中的包装类是一种特殊的类,用来将基本数据类型(如 int、double、char 等)包装成对象。包装类的作用是可以让基本数据类型具有对象的特性,比如可以作为参数传递给泛型类或方法,可以调用对象的方法,可以…...

【Python入门】Pycharm的使用指南
前言 📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步,喜爱音乐的一位博主。 📗本文收录于Python零基础入门系列,本专栏主要内容为Python基础语法、判断、循环语句、函…...
python搭建HaIcon物联平台!
Python是一种高级编程语言,易于学习和理解。它在各个领域都有着广泛的应用,例如数据科学、机器学习、爬虫等。 在Python的强大功能之外,Python还有着丰富的第三方库和框架,其中之一就是HaIcon。HaIcon是一种基于Python的物联网平台,它提供了完整的解决方案,包括设备管理…...

GUI编程(二)
Swing Swing是GUI(图形用户界面)开发工具包。 早期的AWT(抽象窗口工具包)组件开发的图形用户界面,要依赖本地系统,当把AWT组件开发的应用程序移植到其他平台的系统上运行时,不能保证其外观风格…...

俩小伙一晚上写了个 AI 应用,月入两万??(文末附开发教程)
开发出一款能够与 AI 对话生成和编辑思维导图的工具,听起来似乎只能是一群专业的 AI 背景团队花费大量的时间和精力训练模型,打磨应用才能完成的事情。 但是,两名大学生却在一夜之间完成了,就像炼金术士将庸俗的材料转化成黄金一…...

Python爬虫常用框架
大家都知道python是一门多岗位编程语言,学习python之后可以从事的岗位有很多,python爬虫便在其中,不过很多人对python不是很了解,所以也不知道python爬虫是什么,接下来小编为大家介绍一下。 Python是一门非常适合开发…...

2023亚马逊云科技研究,数字化技能为中国企业和员工带来经济效益
在中国,信息技术在个人、企业和宏观经济层面都推动着重大变革。为了研究这些变化所带来的影响,盖洛普咨询公司(Gallup)和亚马逊云科技开展了关于数字化技能的调研。 研究表明,数字化技能正在为中国企业和在职人员带来巨大的经济价值&#x…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...

解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...