当前位置: 首页 > news >正文

常量与变量:编程中重要的两种数据类型

常量与变量

在编程中,我们常常需要存储一些数据。这些数据有些是恒定不变的,有些却是可以随时变化的。对于恒定不变的数据,我们称之为常量;对于可以变化的数据,我们则称之为变量。这两种数据类型在程序中非常重要,我们来看看它们的区别和使用。

常量

常量是一种恒定不变的量。在程序中,常量一旦被定义后就不可以再次赋值,其值保持不变。通常常量的定义时使用 const 关键字。例如:

const int A = 10;

这个常量 A 被定义为整数类型,初始值为 10。在程序中,如果我们尝试去修改 A 的值,会受到编译器的警告。

常量的作用在于:我们可以使用名字来指代某个值,并且确保这个值在程序执行期间不会改变,这样可以提高程序的可读性和可维护性。

变量

相比之下,变量则是可以随时更改的值。它们是程序中最重要的数据类型之一。在程序中,我们需要存储一些值,这些值有时会随着程序的执行而改变,这就是变量的作用。我们可以使用变量来存储一段数据,然后随时更改这个数据。例如:

int B = 100;

这个变量 B 被定义为整数类型,初始值为 100。在程序中,我们可以随时更改 B 的值来存储一个新的整数值。

变量和常量的最大区别在于,变量在程序执行期间可以随时更改,而常量的值始终保持不变。这使得变量非常适合存储需要经常更改的数据,而常量则适合存储恒定的值,避免了程序中的错误。

举例说明

假设我们有一个程序需要计算一个正方形的周长和面积。我们可以使用变量和常量来存储这些值。例如:

const int side_length = 10;  // 正方形的边长为 10
int perimeter = 4 * side_length;  // 计算周长
int area = side_length * side_length;  // 计算面积

在这个例子中,我们使用常量 side_length 来存储正方形的边长。因为正方形的边长是恒定不变的,所以我们使用常量来表示它。然后,我们使用两个变量 perimeterarea 来分别计算正方形的周长和面积。这两个变量存储的值可以随时更改,因为它们的值在程序执行期间可能会改变。

总结

常量和变量是编程中非常重要的两种数据类型。常量是恒定不变的值,而变量可以随时更改。在程序中,我们需要适当地使用常量和变量来存储数据,以提高程序的可读性和可维护性。

相关文章:

常量与变量:编程中重要的两种数据类型

常量与变量 在编程中,我们常常需要存储一些数据。这些数据有些是恒定不变的,有些却是可以随时变化的。对于恒定不变的数据,我们称之为常量;对于可以变化的数据,我们则称之为变量。这两种数据类型在程序中非常重要&…...

( 数组和矩阵) 287. 寻找重复数 ——【Leetcode每日一题】

❓287. 寻找重复数 难度:中等 给定一个包含 n 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),可知至少存在一个重复的整数。 假设 nums 只有 一个重复的整数 ,返回 这个重复的数 。 你…...

【学习笔记】「JOISC 2022 Day2」复制粘贴 3

看了正解。我觉得很厉害。虽然用减枝水过去了。 区间 d p dp dp。但是这个转移怎么看都不是 O ( 1 ) O(1) O(1)的。 border \text{border} border 那么 trick \text{trick} trick应该都能看出来。能进行剪切操作当且仅当 s [ l , p ] s [ q , r ] s_{[l,p]}s_{[q,r]} s[l,p]​…...

武忠祥老师每日一题||定积分基础训练(三)

常用的基本不等式&#xff1a; sin ⁡ x < x < t a n x , x ∈ ( 0 , π 2 ) \sin x<x<\ tan x,x\in(0,\frac{\pi}{2}) sinx<x< tanx,x∈(0,2π​) e x ≥ 1 x , x ∈ ( − ∞ , ∞ ) e^x\ge1x,x\in(-\infty,\infty) ex≥1x,x∈(−∞,∞) x 1 x ≤ ln …...

Docker安装常用软件-Apollo(有问题)

零&#xff1a;apollo概念介绍 官网网站&#xff1a;GitHub - apolloconfig/apollo: Apollo is a reliable configuration management system suitable for microservice configuration management scenarios. gitee网址&#xff1a;mirrors / ctripcorp / apollo GitCode …...

f(x)与|f(x)|,f ‘ (x),F(x)常见关系。

1.f(x)与|f(x)|关系。 1.连续关系。(f(x)在"[a,b]上连续" > |f(x)|在"[a,b]连续") ①如果f(x)在[a,b]上连续。则|f(x)|在[a,b]上连续. &#xff08;因为f(x)在x0的连续点>x0必为|f(x)|的连续点&#xff09; 注&#xff1a;”[a,b]连续“包括&#…...

今天面了一个来字节要求月薪23K,明显感觉他背了很多面试题...

最近有朋友去字节面试&#xff0c;面试前后进行了20天左右&#xff0c;包含4轮电话面试、1轮笔试、1轮主管视频面试、1轮hr视频面试。 据他所说&#xff0c;80%的人都会栽在第一轮面试&#xff0c;要不是他面试前做足准备&#xff0c;估计都坚持不完后面几轮面试。 其实&…...

如何使用二元三次回归分析建立预测模型?(分析、原理、代码示例)

二元三次回归是一种用于建立两个自变量与一个因变量之间关系的回归模型&#xff0c;常用于数据分析和预测。下面我会更详细地解释一下二元三次回归的原理、分析和示例代码。 1、原理 二元三次回归分析用多项式回归建立预测模型&#xff0c;其中包括两个自变量&#xff08;通常…...

面向万物智联的应用框架的思考和探索(上)

原文&#xff1a;面向万物智联的应用框架的思考和探索&#xff08;上&#xff09;&#xff0c;点击链接查看更多技术内容。 应用框架&#xff0c;是操作系统连接开发者生态&#xff0c;实现用户体验的关键基础设施。其中&#xff0c;开发效率和运行体验是永恒的诉求&#xff0c…...

《Python机器学习基础教程》第1章学习笔记

目录 第1章 引言 1.1 为何选择机器学习 1.1.1 机器学习能够解决的问题 第1章 引言 机器学习又称为预测分析或统计学习&#xff0c;是一个交叉学科&#xff0c;是从数据中提取知识。 1.1 为何选择机器学习 智能应用早期&#xff0c;使用专家设计的规则体系来设计。 缺点&…...

ClickHouse 内存管理是如何实现的

概述 本文介绍Clickhouse内存管理的实现原理。通过本文的分析&#xff0c;可以对Clickhouse的内存管理有一个概要的理解。 Clickouse内存管理组成 ClickHouse 使用内存管理系统来控制内存资源的分配和释放。内存管理系统的主要组成部分是&#xff1a; 内存池&#xff1a;Cl…...

docker容器技术

什么是docker Docker 使用 Google 公司推出的 Go 语言 进行开发实现&#xff0c;基于 Linux 内核的 cgroup&#xff0c;namespace&#xff0c;以及 OverlayFS 类的 Union FS 等技术&#xff0c;对进程进行封装隔离&#xff0c;属于 操作系统层面的虚拟化技术。由于隔离的进程独…...

设计模式七大设计原则

文章目录 1、什么是设计模式2、单一职责原则3、开闭原则4、接口隔离原则5、依赖倒置原则6、迪米特法则&#xff08;最少知道原则&#xff09;7、里式替换原则8、组合优于继承 设计模式主要是为了满足一个字 变&#xff0c;这个字&#xff0c;可能是需求变更、可能是场景变更&a…...

【Hello Network】TCP协议相关理解

作者&#xff1a;小萌新 专栏&#xff1a;网络 作者简介&#xff1a;大二学生 希望能和大家一起进步 本篇博客简介&#xff1a;补充下对于TCP协议的各种理解 TCP协议相关实验 TCP相关试验理解CLOSE_WAIT状态理解TIME_WAIT状态解决TIME_WAIT状态引起的bind失败的方法理解listen的…...

实施CRM目标有哪几步?如何制定CRM目标?

在当今竞争激烈的商业环境中&#xff0c;与客户建立持久的关系是企业重要的工作。CRM客户管理系统能有效帮助企业管理优化流程、管理客户&#xff0c;提高销售成功率&#xff0c;推动收入增长。那么您了解如何实施CRM吗&#xff1f;下面说说实施CRM目标是什么&#xff0c;如何设…...

船舶建造概论(船舶建造工艺任务与现代造船模式)

船舶建造概论 1 船舶建造概论1.1 船舶建造工艺主要任务1.2 船舶建造流程&#xff08;1&#xff09;钢材料预处理&#xff08;2&#xff09; 钢材料加工&#xff08;3&#xff09;分段制作&#xff08;4&#xff09;总段制作&#xff08;5&#xff09;船台合拢&#xff08;6&…...

项目内训(2023.5.6)

目录 Nacos是什么&#xff1f; 领域模型是什么&#xff1f; domain模块一般是干什么的&#xff1f; 在小乌龟中合并其他分支的作用是什么&#xff1f; nacos的配置文件 服务集群、服务提供、服务更加灵活庞大、消费服务、访问比较麻烦&#xff0c;A和B服务一起访问 系统结…...

【操作系统OS】学习笔记第二章 进程与线程(下)【哈工大李治军老师】

基于本人观看学习 哈工大李治军老师主讲的操作系统课程 所做的笔记&#xff0c;仅进行交流分享。 特此鸣谢李治军老师&#xff0c;操作系统的神作&#xff01; 如果本篇笔记帮助到了你&#xff0c;还请点赞 关注 支持一下 ♡>&#x16966;<)!! 主页专栏有更多&#xff0…...

Linux命令集(Linux文件管理命令--rmdir指令篇)

Linux命令集&#xff08;Linux文件管理命令--rmdir指令篇&#xff09; Linux文件管理命令集&#xff08;rmdir指令篇&#xff09;5. rmdir(remove directory)1. 删除空的目录 folder12. 强制删除目录 folder1&#xff08;包括非空目录&#xff09;3. 递归删除目录及其目录下所有…...

在技术圈超卷的当下,学历到底是敲门砖还是枷锁?

前言 最近&#xff0c;突然之间被“孔乙己文学”刷屏了&#xff0c;短时间内“孔乙己文学”迅速走红&#xff0c;孔乙己是中国文学中的一位经典人物&#xff0c;他的长衫被认为是他的象征之一&#xff0c;孔乙己的长衫折射出很多现象&#xff0c;既有社会的&#xff0c;也有教育…...

Linux cgroup

前言 Cgroup和namespace类似&#xff0c;也是将进程进程分组&#xff0c;但是目的与namespace不一样&#xff0c;namespace是为了隔离进程组之前的资源&#xff0c;而Cgroup是为了对一组进程进行统一的资源监控和限制。 Cgroup的组成 subsystem 一个subsystem就是一个内核模…...

PID整定二:基于Ziegler-Nichols的频域响应

PID整定二&#xff1a;基于Ziegler-Nichols的频域响应 1参考2连续Ziegler-Nichols方法的PID整定2.1整定方法2.2仿真示例 1参考 1.1根轨迹图的绘制及分析 1.2计算机控制技术01-3.4离散系统的根轨迹分析法 1.3PID控制算法学习笔记 2连续Ziegler-Nichols方法的PID整定 2.1整定…...

【tkinter 专栏】专栏前言

文章目录 前言本章内容导图1. tkinter 工具及特点2. 为什么使用 Python 进行 GUI 设计?2.1 Python 可以做什么2.2 使用 tkinter 可以干什么?3. 如何学习使用 tkinter 进行 GUI 设计?4. 开发环境搭建4.1 Python 的版本4.2 安装 Python4.2.1 下载 Python 安装包4.2.2 安装 Pyt…...

解决Linux中文字体模糊的4种方法

在Linux中&#xff0c;字体是非常重要的一部分&#xff0c;因为它们直接影响到用户的视觉体验。如果Linux字体模糊不清&#xff0c;那么用户将很难阅读文本&#xff0c;这将极大地降低用户的工作效率。本文将介绍Linux Mint中文字体模糊的问题&#xff0c;并提供一些解决方案。…...

【Android入门到项目实战-- 7.3】—— 如何调用手机摄像头和相册

目录 一、调用摄像头拍照 二、打开相册选择照片 学完本篇文章可以收获如何调用手机的摄像头和打开手机相册选择图片功能。 一、调用摄像头拍照 先新建一个CameraAlbumTest项目。 修改activity_main.xml,代码如下&#xff1a; 按钮打开摄像头&#xff0c;ImageView将拍到的…...

浅聊AIOT

引言 IoT是(Internet of Things)的简称&#xff0c;也就是人们常说的物联网&#xff1b;随着智能硬件的发展和推广&#xff0c;制造成本也随之下降&#xff0c;很多的厂家也慢慢地拥抱网络互联&#xff0c;逐步实现设备互联&#xff0c;也就进入了人们常说的万物互联时代。虽然…...

Python之模块和包(九)

1、模块 1、模块概述 模块是一个包含了定义的函数和变量等的文件。模块可以被程序引入&#xff0c;以使用该模块中的函数等功能。通俗讲&#xff1a;模块就好比是工具包&#xff0c;要想使用这个工具包中的工具(就好比函数)&#xff0c;就需要导入这个模块。 2、import 在P…...

C++-----动态规划

目录 一、动态规划的基本思想 二、设计动态规划法的步骤 三、动态规划问题的特征 4.1 矩阵连乘积问题 4.1.1 分析最优解的结构 4.1.2 建立递归关系 4.1.3 计算最优值 4.1.3 计算最优值 4.1.3 构造最优解 4.2 动态规划算法的基本要素 4.2.1 最优子结构 4.2.2 重叠子问题 …...

2.2 Linux控制台访问CLI

系列文章目录 第1章 Linux Shell简介 第2章 Shell基础 <本章所在位置> 第3章 Bash Shell基础命令 第4章 Bash Shell命令进阶 第5章 Linux Shell深度理解 第6章 Linux环境变量 第7章 Linux文件权限 第8章 Linux文件系统的管理 第9章 Linux软件安装 第10章 Linux文本编辑器…...

代码随想录补打卡 509 斐波那契数列

代码如下 //斐波那契数列的第0项是0 第一项是1 func fib(n int) int { if n < 1 { return n } dp : make([]int,n1) dp[0] 0 dp[1] 1 for i : 2 ; i < n ; i { dp[i] dp[i-1] dp[i-2] } return dp[n] } 70 爬楼梯 代码如下 func climbStairs(n int) int …...

网站建设 软件开发/百度推广服务费一年多少钱

下面的操作都是在linux下进行的&#xff0c;我用的Ubuntu。切换到su超级用户。 1.下载源码&#xff0c;有各种方法&#xff1a; ①你如果能访问谷歌的话&#xff0c;直接用git下载。 ②不能访问谷歌&#xff0c;那就搜索下载源码压缩包&#xff08;搜不到的可以联系我&#…...

织梦手机网站免费模板/东莞网络营销推广专业

这种大整数类型编译器的gcc是不支持的&#xff0c;比如在codeblocks 16.01/Dev C是无法编译的&#xff0c;但是提交到大部分OJ上是可以编译且能用的。C/C标准。IO是不认识__int128这种数据类型的&#xff0c;自己实现输入和输出&#xff0c;其他的运算&#xff0c;与int没有什么…...

wordpress分类排序号/全自动推广软件

被调合约(通过call回调)支持接收以太币的案例: 被调合约(通过call回调)支持接收以太币的案例:pragma solidity >0.4.0 <0.6.0;contract Test001 {// 这个合约会保留所有发送给它的以太币&#xff0c;没有办法返还。// 必须实现Fallback回退函数&#xff0c;才能支持cal…...

网站建设的合同书/网络营销策略制定

一、前言为了方便小公司没有运维开发人员&#xff0c;利用Jenkin解决了繁琐的打包部署问题。这次我就写了一个Gogs的集成教程&#xff0c;我觉的Gogs私服比较简单&#xff0c;其他的GitLab、svn、GitHub基本上也是一样的&#xff0c;搭建好了&#xff0c;开发人员只需要提交到版…...

如何用服务器代替空间做网站/百度手机app

该文章转载自 http://fann.im/blog/2012/04/12/difference-between-objectforkey-and-valueforkey-in-nsdictionary/ 感谢原作者 从 NSDictionary 取值的时候有两个方法&#xff0c;objectForKey: 和 valueForKey:&#xff0c;这两个方法具体有什么不同呢&#xff1f; 先从 NS…...

营销型网站建设费用怎么这么大/推广引流的10个渠道

这篇文章主要介绍了Java加密算法RSA代码实例,文中通过示例代码介绍的非常详细&#xff0c;对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下代码如下import javax.crypto.BadPaddingException;import javax.crypto.Cipher;import javax.crypto.IllegalBlockSi…...