Pytorch复习笔记--torch.nn.functional.interpolate()和cv2.resize()的使用与比较
1--前言
博主在处理图片尺度问题时,习惯使用 cv2.resize() 函数;但当图片数据需用显卡加速运算时,数据需要在 GPU 和 CPU 之间不断迁移,导致程序运行效率降低;
Pytorch 提供了一个类似于 cv2.resize() 的采样函数,即 torch.nn.functional.interpolate(),支持最近邻插值(nearest)和双线性插值(bilinear)等功能,通过设置合理的插值方式可以取得与 cv2.resize() 函数完全一样的效果。
2--代码测试
① 最近邻方法('nearnest' 和 cv2.INTER_NEAREST):
import torch
import cv2
import torch.nn.functional as F
import numpy as npinput_data1 = torch.randint(low = 0, high = 255, size = [40, 40, 3])
input_data2 = np.array(input_data1, dtype = np.uint8)input_data1 = input_data1.permute(2, 0, 1).unsqueeze(0).float() # [1, 3, 40, 40]
output_data1 = F.interpolate(input_data1, size = (224, 224), mode='nearest').float() # [1, 3, 224, 224]
output_data2 = cv2.resize(input_data2, dsize = (224, 224), interpolation=cv2.INTER_NEAREST) # [224, 224, 3]data1 = np.array(output_data1.squeeze(0).permute(1, 2, 0), dtype=np.uint8)
data2 = np.array(output_data2, dtype=np.uint8)print(data1 == data2)print("All done !")

② 双线性插值方法('bilinear' 和 cv2.INTER_LINEAR):
import torch
import cv2
import torch.nn.functional as F
import numpy as npinput_data1 = torch.randint(low = 0, high = 255, size = [40, 40, 3])
input_data2 = np.array(input_data1, dtype = np.uint8)input_data1 = input_data1.permute(2, 0, 1).unsqueeze(0).float() # [1, 3, 40, 40]
output_data1 = F.interpolate(input_data1, size = (224, 224), mode='bilinear').float() # [1, 3, 224, 224]
output_data2 = cv2.resize(input_data2, dsize = (224, 224), interpolation=cv2.INTER_LINEAR) # [224, 224, 3]data1 = np.array(output_data1.squeeze(0).permute(1, 2, 0), dtype=np.uint8)
data2 = np.array(output_data2, dtype=np.uint8)print(data1 == data2)print("All done !")

上面两个测试代码的结果表明,在采取相同插值方式的前提下,torch.nn.functional.interpolate() 和 cv2.resize() 两个方法的功能是完全等价的,处理后的数据相同;
3--相关补充
① 使用 torch.nn.functional.interpolate()的注意事项:
1. 插值方法(mode)与输入数据的维度(minibatch, channels, [optional depth], [optional height], width)密切相关,目前支持的数据维度有以下几种:
① 3D张量输入:minibatch, channels, width;
② 4D张量输入:minibatch, channels, height, width;
③ 5D张量输入:minibatch, channels, depth, height, width;
2. 插值方法和输入维度的关系如下:
相关文章:
Pytorch复习笔记--torch.nn.functional.interpolate()和cv2.resize()的使用与比较
1--前言 博主在处理图片尺度问题时,习惯使用 cv2.resize() 函数;但当图片数据需用显卡加速运算时,数据需要在 GPU 和 CPU 之间不断迁移,导致程序运行效率降低; Pytorch 提供了一个类似于 cv2.resize() 的采样函数&…...
ASP.NET Core MVC 项目 AOP之ActionFilterAttribute
目录 一:说明 二:实现ActionFilterAttribute父类 一:说明 ActionFilterAttribute比前两者简单方便,易于扩展,不易产生代码冗余。 ActionFilterAttribute过滤器执行顺序: 1:执行控制器中的构造函数,实例化控制器 2:执行ActionFilterAttribute.OnActionExecutionA…...
浅析EasyCVR安防视频能力在智慧小区建设场景中的应用及意义
一、行业需求 城市的发展创造了大量工作机会,人口的聚集也推动了居民住宅建设率的增长。人民生活旨在安居乐业,能否住得“踏实”是很多劳动工作者最关心的问题。但目前随着住宅小区规模的不断扩大、人口逐渐密集,在保证居住环境舒适整洁的同…...
Python的深、浅拷贝到底是怎么回事?一篇解决问题
嗨害大家好鸭!我是小熊猫~ 一、赋值 Python中, 对象的赋值都是进行对象引用(内存地址)传递, 赋值(), 就是创建了对象的一个新的引用, 修改其中任意一个变量都会影响到另一个 will …...
TCP协议十大特性
日升时奋斗,日落时自省 目录 1、确认应答 1.1、序号编辑 2、超时重传 3、连接管理 3.1、三次握手 3.2、四次挥手 4、滑动窗口 5、流量控制 6、拥塞控制 7、延时应答 8、捎带应答 9、面向字节流 10、异常情况 TCP协议: 特点:有…...
2.14作业【GPIIO控制LED】
设备树 myleds{ myled1 <&gpioe 10 0>; myled2 <&gpiof 10 0>; myled3 <&gpioe 8 0>; }; 驱动代码 #include<linux/init.h> #include<linux/module.h> #include<linux/of.h&…...
5min搞定linux环境Jenkins的安装
5min搞定linux环境Jenkins的安装 安装Jenkinsstep1: 使用wget 命令下载Jenkinsstep2、创建Jenkins日志目录并运行jekinsstep3、访问jenkins并解锁jenkins,安装插件以及创建管理员用户step4、到此,就完成了Finish、以上步骤中遇到的问题1、 jenkins启动不了2、jenkins无法访问…...
Cortex-M0存储器系统
目录1.概述2.存储器映射3.程序存储器、Boot Loader和存储器重映射4.数据存储器5.支持小端和大端数据类型数据对齐访问非法地址多寄存器加载和存储指令的使用6.存储器属性1.概述 Cortex-M0处理器具有32位系统总线接口,以及32位地址线(4GB的地址空间&…...
软件测试——测试用例之场景法
一、场景法的应用场合 场景法主要用于测试软件的业务流程和业务逻辑。场景法是基于软件业务的测试方法。在场景法中测试人员把自己当成最终用户,尽可能真实的模拟用户在使用此软件的操作情景: 重点模拟两类操作: 1)模拟用户正确…...
英文写作中的常用的衔接词
1. 增补 (Addition) in addition, furthermore, again, also, besides, moreover, whats more, similarly, next, finally 2.比较(Comparision) in the same way, similarly, equally, in comparison, just as 3. 对照 (Contrast) in contrast, on …...
新库上线 | CnOpenData中国地方政府债券信息数据
中国地方政府债券信息数据 一、数据简介 地方政府债券 指某一国家中有财政收入的地方政府地方公共机构发行的债券。地方政府债券一般用于交通、通讯、住宅、教育、医院和污水处理系统等地方性公共设施的建设。地方政府债券一般也是以当地政府的税收能力作为还本付息的担保。地…...
Python 条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。 可以通过下图来简单了解条件语句的执行过程: Python程序语言指定任何非0和非空(null)值为true,0 或者 null为false。 Python 编…...
C语言思维导图大总结 可用于期末考试 C语言期末考试题库
目录 一.C语言思维导图 二.C语言期末考试题库 一.C语言思维导图 导出的图可能有点糊,或者查看链接:https://share.weiyun.com/uhf1y2mp 其实原图是彩色的不知道为什么导出时颜色就没了 部分原图: 也可私信我要全图哦。 图里的链接可能点不…...
从零实现深度学习框架——再探多层双向RNN的实现
来源:投稿 作者:175 编辑:学姐 往期内容: 从零实现深度学习框架1:RNN从理论到实战(理论篇) 从零实现深度学习框架2:RNN从理论到实战(实战篇) 从零实现深度…...
Flink 连接流详解
连接流 1 Union 最简单的合流操作,就是直接将多条流合在一起,叫作流的“联合”(union)。联合操作要求必须流中的数据类型必须相同,合并之后的新流会包括所有流中的元素,数据类型不变。这种合流方式非常简…...
分享112个HTML电子商务模板,总有一款适合您
分享112个HTML电子商务模板,总有一款适合您 112个HTML电子商务模板下载链接:https://pan.baidu.com/s/13wf9C9NtaJz67ZqwQyo74w?pwdzt4a 提取码:zt4a Python采集代码下载链接:采集代码.zip - 蓝奏云 有机蔬菜水果食品商城网…...
2023备战金三银四,Python自动化软件测试面试宝典合集(八)
马上就又到了程序员们躁动不安,蠢蠢欲动的季节~这不,金三银四已然到了家门口,元宵节一过后台就有不少人问我:现在外边大厂面试都问啥想去大厂又怕面试挂面试应该怎么准备测试开发前景如何面试,一个程序员成长之路永恒绕…...
J-Link RTT Viewer使用教程(附代码)
目录 RTT(Real Time Transfer)简介 使用教程 常用API介绍 RTT缓冲大小修改 使用printf重定向 官方例程 RTT(Real Time Transfer)简介 平常调试代码中使用串口打印log,往往需要接出串口引脚,比较麻烦,并且串口打印速度较慢,串…...
C语言——指针、数组的经典笔试题目
文章目录前言1.一维数组2.字符数组3.二维数组4.经典指针试题前言 1、数组名通常表示首元素地址,sizeof(数组名)和&数组名两种情况下,数组名表示整个数组。 2、地址在内存中唯一标识一块空间,大小是4/8字节。32位平台4字节,64位…...
【C语言】程序环境和预处理|预处理详解|定义宏(上)
主页:114514的代码大冒险 qq:2188956112(欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ ) Gitee:庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 文章目录 目录 文章目录 前言 一、程序的翻译环境和执行环境 二、详解编译和链接 1.翻译环境 2.编…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
