当前位置: 首页 > news >正文

【高数+复变函数】傅里叶积分

文章目录

  • 【高数+复变函数】傅里叶积分
    • 2. 傅里叶积分
      • 2.1 复数形式积分公式
      • 2.2 三角形式

上一节: 【高数+复变函数】傅里叶级数

【高数+复变函数】傅里叶积分

2. 傅里叶积分

在上一节中,我们知道了傅里叶级数的基本知识,其中,周期为 2 l 2l 2l的函数的傅里叶展开为:
f ( x ) = a 0 2 + ∑ n = 1 x ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{x}\left(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l}\right) f(x)=2a0+n=1x(ancoslx+bnsinlx) w = π l w=\frac{\pi}{l} w=lπ,上式就变成了:
f ( x ) = a 0 2 + ∑ n = 1 x ( a n cos ⁡ n w x + b n sin ⁡ cos ⁡ n w x ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{x}\left(a_n\cos{nw x}+b_n\sin\cos{nw x}\right) f(x)=2a0+n=1x(ancosnwx+bnsincosnwx)在复变函数中,我们常使用 T T T为周期,也就是 T = 2 l T=2l T=2l,所以傅里叶级数展开式也就变成了:
f T ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) f_T(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos n\omega t+b_n\sin n\omega t) fT(t)=2a0+n=1(ancost+bnsint)其中:

ω = 2 π T . a 0 = 2 T ∫ − T 2 T 2 f T ( t ) d t , a n = 2 T ∫ − T 2 T 2 f T ( t ) c o s n w t d t ( n = 1 , 2 , 3 , ⋯ ) , b n = 2 T ∫ − T 2 T 2 f T ( t ) s i n n w t d t ( n = 1 , 2 , 3 , ⋯ ) . \begin{array}{l}\omega=\frac{2\pi}{T}.\\ a_{0}=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_{T}(t)\mathrm{d}t,\\ a_{n}=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_{T}(t)\mathrm{cos}nwtdt\quad(n=1,2,3,\cdots),\\ b_{n}=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_{T}(t)\mathrm{sin}nwtdt\quad(n=1,2,3,\cdots).\end{array} ω=T2π.a0=T22T2TfT(t)dt,an=T22T2TfT(t)cosnwtdt(n=1,2,3,),bn=T22T2TfT(t)sinnwtdt(n=1,2,3,).

2.1 复数形式积分公式

之后我们把他化成复数形式,利用:
cos ⁡ φ = e j φ + e − j φ 2 , sin ⁡ φ = e j φ − e − j φ 2 j = − j e j φ − e − j φ 2 \cos\varphi=\frac{\mathrm{e}^{j\varphi}+\mathrm{e}^{-j\varphi}}{2},\sin\varphi=\frac{\mathrm e^{j\varphi}-\mathrm e^{-j\varphi}}{2\mathrm j}=-j\frac{\mathrm e^{j\varphi}-\mathrm e^{-j\varphi}}{2} cosφ=2ejφ+ejφ,sinφ=2jejφejφ=j2ejφejφ
代入可得
f T ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n − j b n 2 e j n ω t + a n + j b n 2 e − j n ω t ) f_T(t)=\frac{a_0}{2}+\sum\limits_{n=1}^\infty\left(\frac{a_n-jb_n}{2}\mathrm{e}^{jn\omega t}+\frac{a_n+jb_n}{2}\mathrm{e}^{-jn\omega t}\right) fT(t)=2a0+n=1(2anjbnejnωt+2an+jbnejnωt)
之后进行替换:
c n = 1 T ∫ − T 2 T 2 f T ( t ) e − j n ω t d t ( n = 0 , ± 1 , ± 2 , ⋯ ) ω n = n ω ( n = 0 , ± 1 , ± 2 , ⋯ ) c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{-j n\omega t}\mathrm{d}t\quad(n=0,\pm1,\pm2,\cdots)\\\omega_n=n\omega(n=0,\pm1,\pm2,\cdots) cn=T12T2TfT(t)ejnωtdt(n=0,±1,±2,)ωn=(n=0,±1,±2,)
即可得Fourier级数的复指数形式:
f T ( t ) = ∑ n = − ∞ + ∞ c n e j ω n t = 1 T ∑ n = − ∞ + ∞ [ ∫ − T 2 T 2 f T ( τ ) e − j ω n τ d τ ] e j ω n t f_T(t)=\sum\limits_{n=-\infty}^{+\infty}c_n\mathbf{e}^{j\omega_nt}=\frac{1}{T}\sum_{n=-\infty}^{+\infty}\Big[\int_{-\frac{T}{2}}^{\frac{T}{2}}f_{T}(\tau)\mathrm{e}^{-j\omega_{n}\tau}\mathrm{d}\tau\Big]\mathrm{e}^{j\omega_{n}t} fT(t)=n=+cnejωnt=T1n=+[2T2TfT(τ)ejωnτdτ]ejωnt
现在我们再来考虑非周期函数能否用Fourier积分来表示:

易知:
lim ⁡ T → ∞ f T ( t ) = f ( t ) \lim\limits_{T\to\infty}f_{T}(\begin{matrix}t\end{matrix})=f(\begin{matrix}t\end{matrix}) TlimfT(t)=f(t)
所以我们可以通过给复指数形式求极限得到 f ( t ) f(t) f(t),求极限的过程中也可消去连加号(过程省略),最终Fourier积分公式为:
f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − j ω τ d τ ] e j ω t d ω . f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}f(\tau)\mathrm e^{-j\omega\tau}\mathrm d\tau\right]\mathrm e^{j\omega t}\mathrm d\omega. f(t)=2π1+[+f(τ)eτdτ]etdω.
至于一个非周期函数 f ( t ) f(t) f(t)在什么条件下,可以用Fourier积分公式来表示,有下列定理:

image-20230513152956628

2.2 三角形式

image-20230513153442505

f ( t ) = 1 π ∫ 0 + ∞ [ ∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ ) d τ ] d ω (1.6) f(t)=\frac{1}{\pi}\int_{0}^{+\infty}[\int_{-\infty}^{+ \infty}f(\tau)\cos\omega(t-\tau)\mathrm{d}\tau]\mathrm{d}\omega \tag{1.6} f(t)=π10+[+f(τ)cosω(tτ)dτ]dω(1.6)

这便是 f ( t ) f(t) f(t)的Fourier积分公式的三角形式。

(1.6)式还可写为:
f ( t ) = 1 π ∫ 0 ∞ [ ∫ − ∞ + ∞ f ( τ ) ( cos ⁡ ω t cos ⁡ ω τ + sin ⁡ ω t sin ⁡ ω τ ) d τ ] d ω . f(t)=\frac{1}{\pi}\int_0^{\infty}\left[\int_{-\infty}^{+\infty}f(\tau)\left(\cos\omega t\cos\omega\tau+\sin\omega t\sin\omega\tau\right)\mathrm{d}\tau\right]\mathrm{d}\omega. f(t)=π10[+f(τ)(cosωtcosωτ+sinωtsinωτ)dτ]dω.
f ( t ) f(t) f(t)是奇函数时:
f ( t ) = 2 π ∫ 0 + ∞ [ ∫ 0 + ∞ f ( τ ) sin ⁡ ω τ d τ ] sin ⁡ ω t d ω . f(t)=\frac{2}{\pi}\int_0^{+\infty}\Big[\int_0^{+\infty}f(\tau)\sin\omega\tau\mathrm d\tau\Big]\sin\omega t\mathrm d\omega. f(t)=π20+[0+f(τ)sinωτdτ]sinωtdω.
f ( t ) f(t) f(t)是偶函数时:
f ( t ) = 2 π ∫ 0 + ∞ [ ∫ 0 + ∞ f ( τ ) cos ⁡ ω τ d τ ] cos ⁡ ω t d ω . f(t)=\frac{2}{\pi}\int_{0}^{+\infty}\left[\int_{0}^{+\infty}f(\tau)\cos\omega\tau\text{d}\tau\right]\cos\omega t\text{d}\omega. f(t)=π20+[0+f(τ)cosωτdτ]cosωtdω.
它们分别称为 Fourier 正弦积分公式和 Fourier 余弦积分公式。

特别,如果 f ( t ) f(t) f(t)仅在 ( 0 , + ∞ ) (0,+\infty) (0,+)上有定义且满足 Fourier 积分存在定理的条件,我们可以采用类似于Fourier 级数中的奇延拓或偶延拓的方法,得到 f ( t ) f(t) f(t)相应的 Fourier 正弦积分展开式或 Fourier 余弦积分展开式

我们可以利用 f ( t ) f(t) f(t)的Fourier积分表达式推证一些反常积分的结果:

例: 求函数 f ( t ) = { 1 , ∣ t ∣ ≤ 1 0 , 其他 f(t)=\left\{\begin{array}{l l}{1,}&{\left|t\right|\leq1}\\ {0,}&{其他}\\ \end{array}\right. f(t)={1,0,t1其他的Fourier积分表达式

根据余弦积分公式,可得出:
2 π ∫ 0 + ∞ sin ⁡ ω cos ⁡ ω t ω d ω = { f ( t ) , t ≠ ± 1 , 1 2 , t = ± 1 , \frac{2}{\pi}\int_0^{+\infty}\frac{\sin\omega\cos\omega t}{\omega}\mathrm{d}\omega=\begin{cases}f(t),\quad t\ne\pm1,\\[2ex]\frac{1}{2},\quad t=\pm1,\end{cases} π20+ωsinωcosωtdω= f(t),t=±1,21,t=±1,
等价于:
∫ 0 + ∞ sin ⁡ ω cos ⁡ ω t ω d ω = { π 2 , ∣ t ∣ < 1 , π 4 , ∣ t ∣ = 1 , 0 , ∣ t ∣ > 1. \int_{0}^{+\infty}\frac{\sin\omega\cos\omega t}{\omega}\mathrm{d}\omega=\begin{cases}\frac{\pi}{2},\quad|t|<1,\\{}\\\frac{\pi}{4},\quad|t|=1,\\{}\\0,\quad|t|>1.\end{cases} 0+ωsinωcosωtdω= 2π,t<1,4π,t=1,0,t>1.
当t=0时, ∫ 0 + ∞ sin ⁡ ω ω d ω = π 2 , \int_0^{+\infty}\frac{\sin\omega}{\omega}\mathrm{d}\omega=\frac{\pi}{2}, 0+ωsinωdω=2π,这就是Dirichlet积分

相关文章:

【高数+复变函数】傅里叶积分

文章目录 【高数复变函数】傅里叶积分2. 傅里叶积分2.1 复数形式积分公式2.2 三角形式 上一节&#xff1a; 【高数复变函数】傅里叶级数 【高数复变函数】傅里叶积分 2. 傅里叶积分 在上一节中&#xff0c;我们知道了傅里叶级数的基本知识&#xff0c;其中&#xff0c;周期为…...

【Leetcode】241. 为运算表达式设计优先级

241. 为运算表达式设计优先级&#xff08;中等&#xff09; 解法一&#xff1a;分治法 对于这道题&#xff0c;加括号其实就是决定运算次序&#xff0c;所以我们可以把加括号转化为&#xff0c;「对于每个运算符号&#xff0c;先执行处理两侧的数学表达式&#xff0c;再处理此…...

torch两个向量除法,对于分母向量中的元素为0是设置为1,避免运算错误

在gpu运行时&#xff0c;如果在进行两个向量除法的时候&#xff0c;对于分母向量中的元素为0是设置为1&#xff0c;避免运算错误。 可以使用torch的division函数以及clamp函数来解决这个问题。具体步骤如下&#xff1a; 使用division函数将分子向量除以分母向量。 使用clamp函…...

NodeJs 最近各版本特性汇总

&#xff08;预测未来最好的方法就是把它创造出来——尼葛洛庞帝&#xff09; NodeJs 官方链接 github链接 V8链接 Node.js发布于2009年5月&#xff0c;由Ryan Dahl开发&#xff0c;是一个基于Chrome V8引擎的JavaScript运行环境&#xff0c;使用了一个事件驱动、非阻塞式I/O模…...

python数据分析案例——天猫订单综合分析

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 什么是数据分析 明确目的–获得数据(爬虫&#xff0c;现有&#xff0c;公开的数据)–数据预处理——数据可视化——结论 准备 环境使用&#xff1a; 在开始写我们的代码之前&#xff0c;我们要准备好运行代码的程序 Anacon…...

05- redis集群模式搭建(上) (包含云服务器[填坑])

目录 1. 准备环境: 2. 简介: -> 2.1 前言: -> 2.2 Redis集群架构实现了对redis的水平扩容 -> 2.3 redis cluster集群原理 3. 搭建后特别需要注意的问题 ->3.1 [重点]: 如果一个服务出现故障: 是否可以继续提供服务??? ---> 3.1.1 如果集群中故障re…...

【AI】YOLOV1原理详解

AI学习目录汇总 0、前言 YOLOv1~3作者是约瑟夫雷德蒙&#xff08;Joseph Chet Redmon&#xff09;&#xff0c;他的网站&#xff1a;https://pjreddie.com/ YOLOv1网站&#xff1a;https://pjreddie.com/darknet/yolov1/ YOLOv2网站&#xff1a;https://pjreddie.com/darknet…...

提高APP安全性的必备加固手段——深度解析代码混淆技术

APP 加固方式 Android APP 加固是优化 APK 安全性的一种方法&#xff0c;常见的加固方式有混淆代码、加壳、数据加密、动态加载等。下面介绍一下 Android APP 加固的具体实现方式。 混淆代码&#xff1a; 使用 ProGuard 工具可以对代码进行混淆&#xff0c;使得反编译出来的代…...

想让行车记录仪协助道路病害自动化检测?可以!

针对【RGB3DS道路表观病害信息智慧检测系统】&#xff0c;我们着重介绍过其与道路检测车做集成预装或者处理道路检测车数据的极大便利&#xff0c;其中之一便是可高效输出带有道路检测车桩号标记的病害报表&#xff0c;这是因为道路检测车数据本身具有规范性。 那么如果使用道…...

git上传大大大文件项目好折磨人

本来想把unity项目的源码上传上gitee啊&#xff0c;但是那个项目有1个多G&#xff0c;还是个半成品&#xff0c;要是写完&#xff0c;都不知道行不行 正常的上传 所用到的命令&#xff1a; 1、 git init 初始化&#xff0c;创建本地仓库 2、 git add . 添加到本地仓库 3、 git…...

java常见异常的处理方法

以下是一些常见的异常处理方法&#xff1a; 捕获和处理异常&#xff08;try-catch&#xff09;&#xff1a; 使用try-catch语句块可以捕获并处理异常。在try块中编写可能抛出异常的代码&#xff0c;然后在catch块中指定异常类型&#xff0c;以便捕获并处理异常。 try {// 可能抛…...

上传图片到阿里云服务器base64 上传

//上传图片到阿里云服务器 function upload_Ali($remoteImage){$imageData $this->n_img_base_64($remoteImage);if ($imageData ! false) {// 初始化 cURL 句柄$ch curl_init();// 设置请求 URL 和一些 cURL 选项curl_setopt($ch, CURLOPT_URL, http://dev.com/index/aja…...

【致敬未来的攻城狮计划】— 连续打卡第二十六天:瑞萨RA Cortex-M 内核RA2E1 RT-Thread BSP 启蒙知识

系列文章目录 由于一些特殊原因&#xff1a; 系列文章链接&#xff1a;&#xff08;其他系列文章&#xff0c;请点击链接&#xff0c;可以跳转到其他系列文章&#xff09;或者参考我的专栏“ 瑞萨MCU ”&#xff0c;里面是 瑞萨RA2E1 系列文章。 24.RA2E1的 DMAC——数据传输 …...

2023年5月8日-5月14日(方案C,下班UE视频教程为主)

目前&#xff0c;ue视频教程进行到了智 慧 城 市&#xff08;3.13&#xff09;&#xff0c;mysql(7.1)&#xff0c;tf1(4.11),蓝图反射(1.9)&#xff0c;moba&#xff08;1.5&#xff09;webapp&#xff08;2.4&#xff09;&#xff0c;mmoarpg(00A_04)&#xff0c;fps1_12(0:3…...

「MIAOYUN」:降本增效,赋能传统企业数字化云原生转型 | 36kr 项目精选

作为新经济综合服务平台第一品牌&#xff0c;36氪自2019年落地四川站以来&#xff0c;不断通过新锐、深度的商业报道&#xff0c;陪跑、支持四川的新经济产业。通过挖掘本土优质项目&#xff0c;36氪四川帮助企业链接更多资源&#xff0c;助力企业成长&#xff0c;促进行业发展…...

Python突破JS加密限制,进行逆向解密

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 目录标题 前言开发环境:模块使用:逆向目标逆向过程参数 JS 加密关键代码Python 登录关键代码尾语 &#x1f49d; 开发环境: Python 3.8 Pycharm 模块使用: time >>> 时间模块&#xff0c;属于内置&#xff0c;无…...

【Linux】exec函数族

目录 1、exec函数族的介绍2、exec相关函数 1、exec函数族的介绍 2、exec相关函数 #include <unistd.h> int execl(const char *pathname, const char *arg0, ... /* (char *)0 */ ); /* - path 需要指定的执行的文件的路径或者名称&#xff0c;相对路径or绝对路径- arg …...

OSQP二次规划求解库使用说明

OSQP二次规划求解库使用说明 贺志国 2023.5.10 1. 凸二次规划的一般表达式 m i n 1 2 x T P x q T x s . t . l ≤ A x ≤ u min \quad \frac{1}{2}x^T Px q^Tx \qquad s.t. \quad l \leq Ax \leq u min21​xTPxqTxs.t.l≤Ax≤u 其中&#xff0c; P P P称为内核矩阵&#x…...

Elasticsearch(一)

Elasticsearch&#xff08;一&#xff09; 初始elasticsearch 什么是elasticsearch elasticsearch是一款非常强大的开源搜索引擎&#xff0c;可以帮助我们从海量数据中快速查找到需要的内容 elasticsearch结合kibana、Logstash、Beats&#xff0c;也就是elastic stack&…...

深入探究Java中的枚举类型:定义、特性和应用

引言&#xff1a; 在Java编程中&#xff0c;枚举类型是一种强大而灵活的工具&#xff0c;用于定义一组具名的常量。它不仅提供了代码可读性和可维护性的优势&#xff0c;还为开发人员提供了一种更安全和结构化的方式来处理固定的常量集合。本文将深入探讨Java中的枚举类型&…...

linux密码忘了?一招解决

目录 一、前言 二、进入编辑界面 三、单用户模式 四、修改密码 五、更新信息 六、退出 七、验证 一、前言 版本&#xff1a;centos7.9、VMware15.5 在我们学习linux运行级别的时候&#xff0c;面试题可能会出如何找回root密码&#xff0c;下面来详细的介绍一波&#xff…...

苹果mac清理软件CleanMyMac X v4.13兼容13系统,堪称Mac最好的系统清理工具

CleanMyMac X for mac是MacOS上一款Mac清理优化工具&#xff0c;不仅包含各种清理功能&#xff0c;更是具有卸载器、维护、扩展、碎纸机这些实用功能&#xff0c;可以同时代替很多工具。它可以清理&#xff0c;优化&#xff0c;保养和监测您的电脑&#xff0c;确保您的Mac运行…...

FPGA实现Cordic算法求解arctan和sqr(x*2 + y* 2)

一. 简介 由于在项目中需要使用的MPU6050&#xff0c;进行姿态解算&#xff0c;计算中设计到**arctan 和 sqr(x2 y 2),**这两部分的计算&#xff0c;在了解了一番之后&#xff0c;发现Cordic算法可以很方便的一次性求出这两个这两部分的计算。另外也可以一次性求出sin和cos的…...

【最终截稿 | Springer 独立出版 | EI稳定检索】 2023年绿色建筑国际会议(ICoGB 2023)

会议简介 Brief Introduction 2023年绿色建筑国际会议(ICoGB 2023) 会议时间&#xff1a;2023年5月21日-23日 召开地点&#xff1a;瑞典斯德哥尔摩 大会官网&#xff1a;www.icogb.org ICoGB 2023将围绕“绿色建筑”的最新研究领域而展开&#xff0c;为研究人员、工程师、专家学…...

Flutter常用状态管理框架及优缺点

Flutter 中常见的状态管理框架有以下几种&#xff1a; Provider&#xff1a; Provider 是一个轻量级的状态管理框架&#xff0c;可用于单个 Widget 或整个 Widget 树中分发状态。它通过 InheritedWidget 和 ChangeNotifier 来实现状态管理&#xff0c;并支持依赖项注入。Redux…...

Ubuntu 20.04 系统配置 OpenVINO 2022.3 环境

由于 OpenVINO 2021 版本在调用 IECore 时会出现 Segmentation fault 的问题&#xff0c;因此需要将其升级为 2022 版本的。 1. 卸载原来版本的 OpenVINO 进入OpenVINO的卸载目录&#xff0c;通常在 /opt/intel 文件夹下&#xff0c; cd /opt/intel/openvino_2021/openvino_…...

浏览器存储技术:localStorage、sessionStorage和cookie的区别

随着互联网技术的不断发展&#xff0c;人们越来越依赖浏览器进行网页浏览和数据处理。浏览器存储技术是Web开发中非常重要的一部分&#xff0c;它可以帮助我们在浏览器端存储数据&#xff0c;而无需将数据传输到服务器。本文将介绍三种常见的浏览器存储技术&#xff1a;localSt…...

MySQL中的内连接和外连接

一、MySQL内连接&#xff08;INNER JOIN&#xff09; 内连接&#xff0c;又称为等值连接&#xff0c;是最常见的连接类型。它根据两个&#xff08;或多个&#xff09;表中具有相同列值的行来创建一个新的结果表。在内连接中&#xff0c;只有通过连接条件匹配的行才会被包含在结…...

node学习手册

Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时&#xff0c;使 JavaScript 可以脱离浏览器环境运行在服务端。它提供了一组 API&#xff0c;可以让开发者轻松地进行服务器端编程。 以下是 Node.js 的学习手册&#xff1a; 安装 Node.js 首先&#xff0c;需要在官网…...

Java中的JSP是什么?如何实现JSP

JavaServer Pages&#xff08;JSP&#xff09;是一种Java技术&#xff0c;可以用于开发动态Web应用程序。它允许开发人员将Java代码嵌入到HTML页面中&#xff0c;以便生成动态内容。本文将介绍JSP的工作原理&#xff0c;以及如何在Java中实现JSP。 JSP的工作原理 JSP的工作原…...