当前位置: 首页 > news >正文

微服务保护——Sentinel

初识Sentinel

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。

1

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
  • 舱壁模式∶限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

2

  • 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

3

  • 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

4

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起
    整个链路都无法访问的情况。

如何避免因瞬间高并发流量而导致服务故障?

  • 流量控制

如何避免因服务故障引起的雪崩问题?

  • 超时处理

  • 线程隔离

  • 降级熔断

服务保护技术对比

5

Sentinel介绍和安装

认识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址: https://sentinelguard.io/zh-cn/index.html

Sentinel具有以下特征:

  • 丰富的应用场景:Sentinel承接了阿里巴巴近10年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
  • 完备的实时监控: Sentinel同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至500台以下规模的集群的汇总运行情况。
  • 广泛的开源生态: Sentinel提供开箱即用的与其它开源框架/库的整合模块,例如与Spring Cloud、Dubbo、gRPC的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入Sentinel
  • 完善的SPI扩展点:Sentinel提供简单易用、完善的SPI扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

安装Sentinel控制台

  1. 下载jar包 ,然后运行命令:
java -jar sentinel-dashboard-1.8.1.jar
  1. 然后访问: localhost:8080即可看到控制台页面,默认的账户和密码都是sentinel

6

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

举例说明

java -jar sentinel-dashboard-1.8.1.jar -Dserver.port=8090

微服务整合Sentinel

引入cloud-demo

要使用Sentinel肯定要结合微服务,这里我们使用SpringCloud实用篇中的cloud-demo工程。

项目结构如下:

7

我们在order-service中整合Sentinel,并且连接Sentinel的控制台,步骤如下:

  1. 引入sentinel依赖:

    <!--sentinel-->
    <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
    
  2. 配置控制台地址

    spring:cloud:sentinel:transport:dashboard: localhost: 8080 #sentinel控制台地址
    
  3. 访问微服务的任意端点,触发sentinel监控

8

限流规则

快速入门

簇点链路

簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

9

点击资源/order/{orderld}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:

10

其含义是限制/order/{orderld}这个资源的单机QPS为1,即每秒只允许1次请求
超出的请求会被拦截并报错。

流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式:

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

关联

  • 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。

    业务需求是有限支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

11

当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

满足下面条件可以使用关联模式:

  • 两个有竞争关系的资源
  • 一个优先级较高,一个优先级较低

链路

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。例如有两条请求链路:

  • /test1 /common
  • /test2 /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

12

  • Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解,示例:
@SentinelResource ("goods")
public void queryGoods() {System.err.println("查询商品");
}
  • Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:
spring:cloud :sentinel:web-context-unify : false # 关闭context整合

流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up: 预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

13

warm up

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是threshold/coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.

例如,我设置QPs的threshold为10,预热时间为5秒,那么初始阈值就是10/3,也就是3,然后在5秒后逐渐增长到10.

14

排队等待

当请求超过QPS阈值时,快速失败和warm up会拒绝新的请求并抛出异常。而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

例如:QPS=5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

15

热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

16

配置示例:

17

代表的含义是:

对hot这个资源的o号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

在热点参数限流的高级选项中,可以对部分参数设置例外配置:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的αPSs不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPs为10

  • 如果参数值是101,则每1秒允许的QPs为15

注意

热点参数限流对默认的SpringMVC资源无效

需要添加@sentinelResource 注解,例如:

@SentinelResource ("hot")
@GetMapping("{orderId}")
public order queryorderByUserId(@PathVariable( "orderId") Long orderId) {//根据id查询订单并返回return orderservice.queryorderById(orderId);
}

“簇点链路”里的热点配置没有高级选择,要在左边的“热点规则”菜单中添加规则

隔离和降级

FeignClient整合Sentinel

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

不管是线程隔离还是熔断降级,都是对**客户端(调用方)**的保护。

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

  1. 修改OrderService的application.yml文件,开启Feign的Sentinel功能

    feign:sentinel:enabled: true #开启Feign的Sentinel功能
    
  2. 给FeignClient编写失败后的降级逻辑

    • 方式一:FallbackClass,无法对远程调用的异常做处理
    • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

步骤一:在feing-api项目中定义类,实现FallbackFactory:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {@Overridepublic UserClient create(Throwable throwable) {return new UserClient() {@Overridepublic User findById(Long id) {log.error("查询用户异常", throwable);return new User();}};}
}

步骤二︰在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory() {return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

@FeignClient(value = "userservice",fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {@GetMapping("/user/{id}")User findById(@PathVariable("id") Long id);
}

线程隔离

线程隔离有两种方式实现:

  • 线程池隔离

    • 优点
      • 支持主动超时
      • 支持异步调用
    • 缺点
      • 线程的额外开销比较大
    • 场景
      • 低扇出
  • 信号量隔离(Sentinel默认采用)

    • 优点

      • 轻量级,无额外开销
    • 缺点

      • 不支持主动超时
      • 不支持异步调用
    • 场景

      • 高频调用
      • 高扇出

18

线程隔离(舱壁模式)

在添加限流规则时,可以选择两种阈值类型:

  • QPS:就是每秒的请求数,在快速入门中已经演示过
  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量实现舱壁模式

19

熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

20

熔断策略-慢调用

断路器熔断策略有三种:慢调用、异常比例、异常数

  • 慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:

21

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

熔断策略-异常比例、异常数

  • 异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:

22

解读∶统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

异常数同理

授权规则

授权规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源( origin)在白名单内的调用者允许访问
  • 黑名单:来源( origin)在黑名单内的调用者不允许访问

23

例如,我们限定只允许从网关来的请求访问order-service,那么流控应用中就填写网关的名称

sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface Request0riginParser {/***从请求request对象中获取origin,获取方式自定义*/String parseOrigin(HttpServletRequest request);
}

例如,我们尝试从request中获取一个名为origin的请求头,作为origin的值:

@Component
public class HeaderOriginParser implements RequestOriginParser {@overridepublic String parse0rigin(HttpServletRequest request){String origin =request.getHeader ("origin");if (StringUtils.isEmpty (origin)){return "blank";}return origin;}
}

我们还需要在gateway服务中,利用网关的过滤器添加名为gateway的origin头:

spring:cloud:gateway:default-filters:- AddRequestHeader=origin,gateway # 添加名为origin的请求头,值为gateway

给/order/{orderld}配置授权规则:

24

此时无法通过浏览器访问:

25.1

只能通过网关访问:

25.2

自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口∶

public interface BlockExceptionHandler {/*** 处理请求被限流、降级、授权拦截时抛出的异常:BlockException*/void handle(HttpServletRequest request,HttpServletResponse response,BlockException e) throws Exception;
}

而BlockException包含很多个子类,分别对应不同的场景:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

我们在order-service中定义类,实现BlockExceptionHandler接口:

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException) {msg = "请求被限流了";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级了";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

规则持久化

规则管理模式

Sentinel的控制台规则管理有三种模式:

  • 原始模式: Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式:保存在本地文件或数据库,定时去读取
  • push模式:保存在nacos,监听变更实时更新

pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

26

push模式

push模式:控制台将配置规则推送到远程配置中心,例如Naco5。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

27

实现push模式

push模式实现最为复杂,依赖于nacos,并且需要修改Sentinel控制台源码。

相关文章:

微服务保护——Sentinel

初识Sentinel 雪崩问题 微服务调用链路中的某个服务故障&#xff0c;引起整个链路中的所有微服务都不可用&#xff0c;这就是雪崩。 解决雪崩问题的常见方式有四种: 超时处理:设定超时时间&#xff0c;请求超过一定时间没有响应就返回错误信息&#xff0c;不会无休止等待舱壁…...

MySQL面试整理

https://houchen-study.oss-cn-hangzhou.aliyuncs.com/%E9%9D%A2%E8%AF%95/MySQL/MySQL%E9%9D%A2%E8%AF%95%E5%A4%A7%E5%85%A8%281%29.pdf 数据库基础知识 为什么要使用数据库&#xff1f; 什么是MySQL&#xff1f; 数据库的三大范式是什么&#xff1f; MySQL有关权限的表…...

Vscode C++环境配置

多文件编译 打开设置搜索coderunner 找到Executor Map 加入-I目录名 目录名/*.cpp 调试 点击调试以后会产生tasks.json文件&#xff0c;加入链接文件和库文件...

matlab小波去噪

本文将为您介绍如何利用MATLAB进行小波去噪处理&#xff0c;并应用于实际数据。小波去噪是一种通过对数据进行小波分解和重构的方法&#xff0c;有效地去除信号中的噪声&#xff0c;提高信号质量。该方法不仅广泛应用于信号处理、图像处理等领域&#xff0c;在实际生产和科研中…...

为什么要采用全网营销策略?全网营销有何优势?

现在市场上有很多全网营销公司&#xff0c;其实很多企业的经理人疑惑全网营销是要干什么&#xff1f;这些公司能干什么&#xff1f;这里小马识途营销顾问给大家做一个整体的解读。 全网营销&#xff0c;概括地说就是在整个互联网&#xff0c;利用各类互联网平台和工具对产品和服…...

prometheus实战之四:alertmanager的部署和配置

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第四篇&#xff0c;在《prometheus实战之三&#xff1a;告警规则》中曾经提到过&#xff0c;整个告警功能分为规则和…...

【Python】glob 包的介绍和使用

glob 是 Python 标准库中的一个模块&#xff0c;它提供了一种查找符合特定模式的路径名的方法&#xff0c;类似于命令行中的 glob 命令。glob 模块用于读取指定路径下的所有符合特定规律的文件名&#xff0c;非常适合用于读取文件夹中的文件列表和操作符合特定规律文件列表。 …...

剑指offer(C++)-JZ48:最长不含重复字符的子字符串(算法-动态规划)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 题目描述&#xff1a; 请从字符串中找出一个最长的不包含重复字符的子字符串&#xff0c;计算该最长子字符串的长度。 数据范围…...

两阶段最小二乘法

两阶段最小二乘法 文章目录 两阶段最小二乘法[toc]1、ivreg包介绍2 、R语言实现 1、ivreg包介绍 R语言计量包ivreg用以解决线性回归模型的内生性问题。 描述&#xff1a;工具变量估计的线性模型通过两阶段最小二乘(2SLS) 回归或通过稳健回归M估计(2SM)或MM估计(2SMM)。主要的…...

ArcMap创建格网统计图

目录 前言 一、人口数据获取 来源一&#xff1a;中科院地理所公开数据集 来源二&#xff1a;WorldPop数据集 二、人口格网统计步骤 1.创建渔网 2.人口数据处理 2.1 栅格转点 2.2 空间插值——处理人口缺失数据 2.3 空间连接——渔网人口统计 总结 前言 在科研中&am…...

[VAE] Auto-Encoding Variational Bayes

直接看paper看得云里雾里&#xff0c;李沐视频一语道破天机&#xff08;建议从30min左右开始看GAN到Diffusion的串讲&#xff09;。VAE的核心思路就是下面&#xff1a; 做生成&#xff0c;其实就是从随机向量&#xff08;z&#xff09;到目标图像&#xff08;x&#xff09;的过…...

《程序员面试金典(第6版)》面试题 16.19. 水域大小(深度优先搜索,类似棋盘类问题,八皇后的简化版本,C++)

题目描述 你有一个用于表示一片土地的整数矩阵land&#xff0c;该矩阵中每个点的值代表对应地点的海拔高度。若值为0则表示水域。由垂直、水平或对角连接的水域为池塘。池塘的大小是指相连接的水域的个数。编写一个方法来计算矩阵中所有池塘的大小&#xff0c;返回值需要从小到…...

Spring 注解之@RestController与@Controller的区别

目录 1&#xff1a;介绍 2&#xff1a;区别 3&#xff1a;总体来说 4&#xff1a;社区地址 1&#xff1a;介绍 RestController 和 Controller 是 Spring MVC 中常用的两个注解&#xff0c;它们都可以用于定义一个控制器类。 2&#xff1a;区别 返回值类型不同&#xff1a;…...

Java中的泛型是什么?如何使用泛型

Java中的泛型是指在定义类、接口和方法时使用类型参数&#xff0c;以使得这些类、接口和方法可以操作多种类型的数据&#xff0c;从而提高代码的重用性和安全性。Java的泛型机制是从JDK5开始引入的&#xff0c;它使得Java程序员能够编写更加通用和类型安全的代码。 什么是泛型…...

【飞行棋】多人游戏-微信小程序开发流程详解

可曾记得小时候玩过的飞行棋游戏&#xff0c;是90后的都有玩过吧&#xff0c;现在重温一下&#xff0c;这是一个可以二到四个人参与的游戏&#xff0c;通过投骰子走棋&#xff0c;一开始靠运气&#xff0c;后面还靠自己选择&#xff0c;谁抢占先机才能赢&#xff0c;还可以和小…...

力扣 146. LRU 缓存

一、题目描述 请你设计并实现一个满足LRU&#xff08;最近最少使用&#xff09;缓存约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以正整数作为容量 capacity 初始化LRU缓存。int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键…...

关于Oracle SCN的最大阈值

SCN每秒增长的速度跟Oracle的版本有关&#xff0c;在Oracle 11.2.0.2之前是每秒允许最大增长16384&#xff0c;在Oracle 11.2.0.2之后是默认每秒允许增长32768&#xff0c;这个值跟新增的隐含参数_max_reasonable_scn_rate有关&#xff0c;如下所示&#xff1a; NAME …...

Linux多路转接之poll

文章目录 一、poll的认识二、编写poll方案服务器三、poll方案多路转接的总结 一、poll的认识 多路转接技术是在不断更新进步的&#xff0c;一开始多路转接采用的是select方案&#xff0c;但是select方案存在的缺点比较多&#xff0c;所以在此基础上改进&#xff0c;产生了poll…...

Webpack打包流程

轻松了解Webpack 打包流程 Webpack是一个现代的JavaScript应用程序的静态模块打包器。它将多个JavaScript文件打包成一个或多个静态资源文件&#xff0c;以便在浏览器中加载。Webpack将应用程序视为一个依赖项图&#xff0c;其中包括应用程序的所有模块&#xff0c;然后通过该…...

React事件委托

React 事件委托&#xff08;Event Delegation&#xff09;是一种优化事件处理的技术&#xff0c;它通过将事件监听器添加到父级元素&#xff08;而不是子元素&#xff09;来实现。当事件触发时&#xff0c;事件会向上冒泡到父元素&#xff0c;然后在父元素上调用事件处理函数。…...

Notion——构建个人知识库

前言 使用Notion快三年了&#xff0c;它All in one的理念在使用以后确实深有体会&#xff0c;一直想找一个契机将这个软件分享给大家&#xff0c;这款笔记软件在网上已经有很多的教程了&#xff0c;所以在这里我主要想分享框架方面的内容给大家&#xff0c;特别对于学生党、研究…...

ModuleNotFoundError: No module named ‘Multiscaledeformableattention‘

在实现DINO Detection方法时&#xff0c;我们可能会遇到以上问题。因为在DeformableAttention模块&#xff0c;为了加速&#xff0c;需要自己去编译这个模块。 如果你的环境变量中能够找到cuda路径&#xff0c;使用正确的torch版本和cuda版本的话&#xff0c;这个问题很容易解…...

【数据结构】链表(C语言实现)

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c语言系列专栏&#xff1a;c语言之路重点知识整合 &#x…...

【2023程序员必看】大数据行业分析

1、政策重点扶持&#xff0c;市场前景广阔 2014年&#xff0c;大数据首次写入政府工作报告&#xff0c;大数据逐渐成为各级政府关注的热点。 2015年9月&#xff0c;国务院发布《促进大数据发展的行动纲要》&#xff0c;大数据正式上升至国家战略层面&#xff0c;十九大报告提…...

通达信SCTR强势股选股公式,根据六个技术指标打分

SCTR指标(StockCharts Technical Rank)的思路来源于著名技术分析师约翰墨菲&#xff0c;该指标根据长、中、短三个周期的六个关键技术指标对股票进行打分&#xff0c;根据得分对一组股票进行排名&#xff0c;从而可以识别出强势股。 与其他技术指标一样&#xff0c;SCTR的设计…...

SpringBoot+Token+Redis+Lua+自动续签极简分布式锁Token登录方案

前言 用SpringBoot做一个项目&#xff0c;都要写登录注册之类的方案 使用Cookie或Session的话&#xff0c;它是有状态的&#xff0c;不符合现代的技术 使用Security或者Shiro框架实现起来比较复杂&#xff0c;一般项目无需用那么复杂 使用JWT它虽然是无状态的&#xff0c;也可…...

多模态:MiniGPT-4

多模态&#xff1a;MiniGPT-4 IntroductionMethodlimitation参考 Introduction GPT-4具有很好的多模态能力&#xff0c;但是不开源。大模型最近发展的也十分迅速&#xff0c;大模型的涌现能力可以很好的迁移到各类任务&#xff0c;于是作者猜想这种能力可不可以应用到多模态模…...

5年时间里,自动化测试于我带来的意义,希望你也能早点知道

摘要&#xff1a;在我有限的软件测试经历里&#xff0c;曾有一段专职的自动化测试经历。 接触自动化 那时第一次上手自动化测试&#xff0c;团队里用的是Python&#xff0c;接口自动化测试的框架是requestsExcelJenkins&#xff0c;APP自动化测试的框架是Appium。 整个公司当…...

【MyBaits】SpringBoot整合MyBatis之动态SQL

目录 一、背景 二、if标签 三、trim标签 四、where标签 五、set标签 六、foreach标签 一、背景 如果我们要执行的SQL语句中不确定有哪些参数&#xff0c;此时我们如果使用传统的就必须列举所有的可能通过判断分支来解决这种问题&#xff0c;显示这是十分繁琐的。在Spring…...

涅槃重生,BitKeep如何闯出千万用户新起点

在全球&#xff0c;BitKeep钱包现在已经有超过千万用户在使用。 当我得知这个数据的时候&#xff0c;有些惊讶&#xff0c;也有点意料之中。关注BitKeep这几年&#xff0c;真心看得出这家公司的发展之迅速。还记得2018年他们推出第一个版本时&#xff0c;小而美&#xff0c;简洁…...