【大数据】HADOOP-YARN容量调度器多队列配置详解实战
简介
Capacity调度器具有以下的几个特性:
- 层次化的队列设计,这种层次化的队列设计保证了子队列可以使用父队列设置的全部资源。这样通过层次化的管理,更容易合理分配和限制资源的使用。
- 容量保证,队列上都会设置一个资源的占比,这样可以保证每个队列都不会占用整个集群的资源。
安全,每个队列有严格的访问控制。用户只能向自己的队列里面提交任务,而且不能修改或者访问其他队列的任务。 - 弹性分配,空闲的资源可以被分配给任何队列。当多个队列出现争用的时候,则会按照比例进行平衡。
多租户租用,通过队列的容量限制,多个用户就可以共享同一个集群,同时保证每个队列分配到自己的容量,提高利用率。 - 操作性,yarn支持动态修改调整容量、权限等的分配,可以在运行时直接修改。还提供给管理员界面,来显示当前的队列状况。管理员可以在运行时,添加一个队列;但是不能删除一个队列。管理员还可以在运行时暂停某个队列,这样可以保证当前的队列在执行过程中,集群不会接收其他的任务。如果一个队列被设置成了stopped,那么就不能向他或者子队列上提交任务了。
- 基于资源的调度,协调不同资源需求的应用程序,比如内存、CPU、磁盘等等。
需求
default 队列占总内存的40%,最大资源容量占总资源的60%
ops 队列占总内存的60%,最大资源容量占总资源的80%
配置队列优先级策略
配置多队列的容量调度器
- 在yarn-site.xml里面配置使用容量调度器
<!-- 使用容量调度器 -->
<property><name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
- 在capacity-scheduler.xml中配置如下:
<?xml version="1.0" encoding="UTF-8"?>
<configuration><!-- 表示集群最大app数 --><property><name>yarn.scheduler.capacity.maximum-applications</name><value>10000</value></property><!-- 表示集群上某队列可使用的资源比例 目的是为了限制过多的am数,即app数 --><property><name>yarn.scheduler.capacity.maximum-am-resource-percent</name><value>0.1</value></property><!-- 配置指定调度器使用的资源计算器 --><!-- DefaultResourseCalculator 默认值,只使用内存进行比较 --><!-- DominantResourceCalculator 多维度资源计算,内存、cpu --><property><name>yarn.scheduler.capacity.resource-calculator</name><value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value></property><!-- root队列中有哪些子队列--><property><name>yarn.scheduler.capacity.root.queues</name><value>default,ops</value></property><!-- *******************default队列*********************** --><!-- default 队列占用的资源容量百分比 40% --><property><name>yarn.scheduler.capacity.root.default.capacity</name><value>40</value></property><!-- default 队列占用的最大资源容量百分比 60%--><property><name>yarn.scheduler.capacity.root.default.maximum-capacity</name><value>60</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.default.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.default.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.default.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.default.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.default.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.default.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.default.default-application-lifetime</name><value>-1</value></property><!-- *******************hive队列*********************** --><!-- hive 队列占用的资源容量百分比 60% --><property><name>yarn.scheduler.capacity.root.ops.capacity</name><value>60</value></property><!-- default 队列占用的最大资源容量百分比 80%--><property><name>yarn.scheduler.capacity.root.ops.maximum-capacity</name><value>80</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.ops.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.ops.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.ops.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.ops.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.ops.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.ops.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.opsdefault-application-lifetime</name><value>-1</value></property><!--CapacityScheduler尝试调度机本地容器之后错过的调度机会数。通常,应该将其设置为集群中的节点数。默认情况下在一个架构中设置大约40个节点。应为正整数值。--><property><name>yarn.scheduler.capacity.node-locality-delay</name><value>40</value></property><!--在节点本地延迟时间之外的另外的错过的调度机会的次数,在此之后,CapacityScheduler尝试调度非切换容器而不是机架本地容器.例如:在node-locality-delay = 40和rack-locality-delay = 20的情况下,调度器将在40次错过机会之后尝试机架本地分配,在40 + 20 = 60之后错过机会.使用-1作为默认值,禁用此功能.在这种情况下,根据资源请求中指定的容器和唯一位置的数量以及集群的大小,计算分配关闭交换容器的错失机会的数量--><property><name>yarn.scheduler.capacity.rack-locality-additional-delay</name><value>-1</value></property><!-- 此配置指定用户或组到特定队列的映射 --><property><name>yarn.scheduler.capacity.queue-mappings</name><value>u:root:default,g:root:default,u:%user:%user</value></property><property><name>yarn.scheduler.capacity.queue-mappings-override.enable</name><value>false</value></property><property><name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name><value>1</value></property><property><name>yarn.scheduler.capacity.application.fail-fast</name><value>false</value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings</name><value></value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings-override.enable</name><value>false</value></property>
</configuration>
- 同步到其他节点后,刷新配置
bin/yarn rmadmin -refreshQueues
- 查看界面展示
- 提交任务,查看队列资源占比情况
提交任务
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100
–driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1
可以看到 向YARN的资源需求是:
amMemory = 2048
amMemoryOverhead = 384
executorMemory = 2048
executorOffHeapMemory. = 0
executorMemoryOverhead = 384
amCores = 1
最终向YARN上申请AM的资源大小为:
am = amMemory + amMemoryOverhead = 2432
executor = executorMemory + executorMemoryOverhead = 2432
capability = <memory:2432,vCores:1>
由于配置的集群资源分配最小单位为1024MB, 因此需要向上取整, 即 3072 MB
这也是为甚么我明明申请的 资源 比较小,但是在yarn上显示的资源总不对,比实际申请的资源要高一些。资源比预期的要高。
这主要是yarn的资源计算是用DominantResourceCalculator来计算管理 cpu、内存的。
spark和yarn上申请的资源没有对的上。
所以最终的资源:
Driver 申请的资源 --driver-memory 2g 实际在yarn中AM申请的资源为 3g1c
Executor 申请的资源 --executor-memory 2g --executor-cores 1 --num-executors 1 实际在yarn中executor申请的资源为 3g1c
最终总的资源为 6g2c
同理再提交一下 1g1c的
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100
–driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2
所以最终的资源:
Driver 申请的资源 --driver-memory 1g 实际在yarn中AM申请的资源为 1g1c
Executor 申请的资源 --executor-memory 1g --executor-cores 1 --num-executors 2 实际在yarn中executor申请的资源为 4g2c
最终总的资源为 6g3c
- 验证队列的最大资源限制
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 5 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100
当内存需求超过队列最大资源时
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 6 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100
最终看到申请的资源可以超过队列配置的资源,但是不会超过最大的资源
spark申请的容器为 6 个,但是最终只启动了4个。
希望对正在查看文章的您有所帮助,记得关注、评论、收藏,谢谢您
相关文章:
【大数据】HADOOP-YARN容量调度器多队列配置详解实战
简介 Capacity调度器具有以下的几个特性: 层次化的队列设计,这种层次化的队列设计保证了子队列可以使用父队列设置的全部资源。这样通过层次化的管理,更容易合理分配和限制资源的使用。容量保证,队列上都会设置一个资源的占比&a…...
加密技术在android系统安全中的应用
前言android 系统安全内容总结 1、算法基础 算法基础参照linux的全盘加密与文件系统加密在android中的应用的2、预备知识 android系统安全特性用到加密算法的如下表:...
KNN&K-means从入门到实战
作者:王同学 来源:投稿 编辑:学姐 1. 基本概念 1.1 KNN k近邻法(k-nearest neighbor,k-NN)是一种基本分类与回归方法。 k近邻法的输入为实例的特征向量对应于特征空间的点;输出为实例的类别&…...
SpringBoot整合RabbitMQ
SpringBoot整合RabbitMQ,生产者 (1)创建maven项目 (2)引入依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><versi…...
Hive---安装教程
Hive安装教程 Hive属于Hadoop生态圈,所以Hive必须运行在Hadoop上 文章目录Hive安装教程上传安装包解压并且更名修改 /etc/profile创建hive-site.xml将mysql的jar包放入Hive库中开启刷新配置文件hadoop开启mysql初始化启动hive上传安装包 将安装包上传到/opt/insta…...
MySQL作业四
学生表:Student (Sno, Sname, Ssex , Sage, Sdept) 学号,姓名,性别,年龄,所在系 Sno为主键 课程表:Course (Cno, Cname,) 课程号,课程名 Cno为主键 学生选课表:SC (Sno, Cno, Score)…...
云原生安全检测器 Narrows(CNSI)的部署和使用
近日, 云原生安全检测器 Narrows(Cloud Native Security Inspector,简称CNSI)发布了0.2.0版本。 (https://github.com/vmware-tanzu/cloud-native-security-inspector) 此项目旨在对K8s集群中的工作负载进…...
【并发编程】【3】Java线程 创建线程与线程运行
并发编程 3.Java线程 本章内容 创建和运行线程 查看线程 线程 API 线程状态 3.1 创建和运行线程 方法一,直接使用 Thread // 创建线程对象 Thread t new Thread() {public void run() {// 要执行的任务} }; // 启动线程 t.start();例如: // 构…...
Ambire 最新消息——2023 年 1 月
大家好,这里是我们在过去几周所做的一切的快速回顾。 发展 整个钱包的交易模拟和余额预测 我们推出了一项真正改变加密钱包 UX 游戏规则的功能:Ambire 现在向用户显示他们的钱包余额将如何更新,甚至在签署交易之前。 这项新功能可以分解为 Am…...
【kubeflow | 镜像源的解决方法——脚本】
20230214 方式一:获取所有镜像列表,自行外网拉取下载 获取KF所需镜像列表脚本 Offical docs for getting all kubeflow images curl https://gist.githubusercontent.com/Jason-CKY/7d7056ce261c6d606585f05218230037/raw/5c27297efdf6424cd9679b9f7…...
function calling convention(函数调用约定)
函数调用约定 函数调用约定,是指当一个函数被调用时,函数的参数会被传递给被调用的函数和返回值会被返回给调用函数。函数的调用约定就是描述参数是怎么传递和由谁平衡...
errgroup 原理简析
golang.org/x/sync/errgroup errgroup提供了一组并行任务中错误采集的方案。 先看注释 Package errgroup provides synchronization, error propagation, and Context cancelation for groups of goroutines working on subtasks of a common task. Group 结构体 // A Gro…...
Centos7.6 下 Docker 安装
Docker的自动化安装 官方的一键安装方式: curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令: curl -sSL https://get.daocloud.io/docker | sh Docker手动安装 手动安装Docker分三步:卸…...
C++11--lambda表达式
目录 lambda表达式的概念 lambda表达式语法 lambda表达式的书写格式 捕捉列表 参数列表 mutable 返回值类型 函数体 lambda表达式交换两个数 函数对象与lambda表达式 lambda表达式的概念 lambda表达式是一个匿名函数 它能让代码更加地简洁 提高了代码可读性 首先定义…...
四【Spring框架】
目录一 Spring概述二 .Spring 的体系结构三 Spring的开发环境3.1 配置pom.xml文件四 项目案例:4.1 创建实体类4.2 在pom.xml中引入依赖4.3 配置Spring-config.xml文件4.4 Test✅作者简介:Java-小白后端开发者 🥭公认外号:球场上的…...
树与二叉树 总复习
一、树的定义 树是一个有n个(n>0)结点的有限集合。 如果n0,称为空树; 如果n>0,称为非空树,有且仅有一个特定的称为根Root的结点(无直接前驱) 如果n>1,除了根节点外&…...
window10安装MySQL数据库
准备好软件MySql的下载参考:(1137条消息) mysql下载与安装过程_weixin_40396510的博客-CSDN博客_mysql数据库下载安装(1137条消息) 安装MySQL的常见问题_二木成林的博客-CSDN博客_sc不是内部或外部命令,也不是可运行的程序解压要C盘(自定义,本…...
羊了个羊游戏开发教程3:卡牌拾取和消除
本文首发于微信公众号: 小蚂蚁教你做游戏。欢迎关注领取更多学习做游戏的原创教程资料,每天学点儿游戏开发知识。嗨!大家好,我是小蚂蚁。终于要写第三篇教程了,中间拖的时间有点儿长,以至于我的好几位学员等…...
SHA1详解
目录 一、介绍 二、与MD5的区别 1、对强行攻击的安全性 2、对密码分析的安全性 3、速度 三、应用 1、文件指纹 2、Git中标识对象 四、算法原理 1、填充消息 2、消息处理 3、数据运算 (1)链接变量 (2)步函数 一、介绍…...
Go并发介绍及其使用
1. goroutine Go语言通过go关键字来启动一个goroutine。注意:go关键字后面必须跟一个函数,不能是语句或者其他东西,函数的返回值被忽略。 goroutine有如下特性: go的执行是非阻塞的,不会等待。go后面的函数的返回值…...
小米手机屏幕解锁技巧精选
手机锁是一种保护存储的用户数据和信息的方法。存储在锁定手机中的所有信息比任何人都可以访问的手机安全得多。但有时,如果用户忘记了这些屏幕锁定,可能会造成麻烦。在此博客中,我们将帮助用户了解如何解锁小米手机。 什么时候需要解锁小米手…...
「SDOI2009」HH去散步
HH去散步 题目限制 内存限制:125.00MB时间限制:1.00s标准输入标准输出 题目知识点 动态规划 dpdpdp矩阵 矩阵乘法矩阵加速矩阵快速幂 思维 构造 题目来源 「SDOI2009」HH去散步 题目 题目背景 HH 有个一成不变的习惯,喜欢在饭后散步…...
用上Visual Studio后,我的世界游戏的构建时间减少了一半
今天我们讲述一个使用 Visual Studio 提升工作效率的案例。 我的世界(Minecraft) 游戏开发商 Mojang Studios 近日联系了 Visual Studio C 团队,因为他们需要将 C 开发扩展到新平台(Linux),同时还希望保留他们现有的技术基础&…...
34、基于51单片机锂电池电压电流容量检测仪表LCD液晶显示 原理图PCB程序设计
方案选择 单片机的选择 方案一:AT89C52是美国ATMEL公司生产的低电压,高性能CMOS型8位单片机,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元…...
【Java基础】泛型(一)-基础使用
本文以Java的官方文档为参考,辅以代码示例,尽可能详尽的叙述泛型的每一个特性 什么是泛型 泛型(Generics)也称为参数化类型(parameterized types),也就是将类型本身作为接口、类、方法中的参数…...
学Python不会不知道NumPy计算包吧,带你五分钟看懂NumPy计算包
从今天我们就开始进入 Python 数据分析工具的教程。 前段时间数据分析和Python都讲了一点点,但是Python的数据库,讲的少了点,所以接下来就讲讲这些重要的常用数据库吧!!! Python 数据分析绝对绕不过的四个…...
积水内涝监测——埋入式积水终端设备介绍
一、设备概述 埋入式积水终端是针对城市内涝推出的积水信息监测采集设备,采用超声波传感技术,对积水的深度进行精确的测量。产品能够在低温、腐蚀环境下可靠运行本产品特别适用于智慧城市中,对城市道路、社区低洼处的积水进行实时监测上报到…...
Kafka的日志同步
首先介绍下LEO和HW LEO: 即LogEndOffset,表示该副本下次日志记录的偏移量HW:即HighWatermark,高水位线,是所有ISR副本集合中的LEO最小值上图中,如果此时三个副本都在ISR集合中,那么此时他们的LE…...
【Mybatis源码解析】mapper实例化及执行流程源码分析
文章目录简介环境搭建源码解析基础环境:JDK17、SpringBoot3.0、mysql5.7 储备知识:《【Spring6源码・AOP】AOP源码解析》、《JDBC详细全解》 简介 基于SpringBoot的Mybatis源码解析: 1.如何对mapper实例化bean 在加载BeanDefinition时&a…...
分布式文件管理系统(MinIO)
1.去中心化,每个点是对等的关系,通过Ngix对负载做均衡工作。 好处: 能够避免单点故障,将多块硬盘组成一个对象存储服务。 2. 使用纠删编码技术来保护数据,是一种回复丢失和损坏的数据的数学算法,他将数据分…...
网站浏览器/苏州seo建站
题干: 本题要求实现一个函数,将两个链表表示的递增整数序列合并为一个非递减的整数序列。 函数接口定义: List Merge( List L1, List L2 );其中List结构定义如下: typedef struct Node *PtrToNode; struct Node {ElementType …...
word做招聘网站/网站收录优化
🎇Linux: 博客主页:一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持…...
wordpress limit login attempts/线上营销方式
之前在项目中使用滑块开关按钮,纯css写的,不考虑兼容低版本浏览器,先说下原理:使用 checkbox 的 选中 checked 属性改变css 伪类样式, 一定要使用-webkit-appearance: none; 先清除checkbox的默认样式 ,否则…...
大连的网站制作公司/百度一下就知道百度首页
Apache的mod_rewrite是提供了强大URL操作的杀手级的模块,可以实现几乎所有你梦想的URL操作类型,其代价是你必须接受其复杂性,因为mod_rewrite的主要障碍就是初学者不容易理解和运用,即使是Apache专家有时也会发掘出mod_rewrite的新…...
怎样做企业的网站建设/快速排名seo
概述 线性基,是线性代数中的概念,在信息学竞赛中,前缀线性基是线性基的扩展,他们主要用于处理有关异或和的极值问题。 一组线性无关的向量即可作为一组基底,张起一个线性的向量空间,这个基底即称为线性基&…...
信用门户网站建设/备案查询网
64位Fedora运行32位C程序所需的类库 作者:王传对 | 出处:博客园 | 2011/9/8 19:29:21 | 阅读64次 Debug 1--> /lib/ld-linux.so.2: bad ELF interpreter: No such file or directory Soulution-->安装32位系统类库 >>yum install glibc.i686…...