当前位置: 首页 > news >正文

darknet yolo标注、训练详细说明

文章目录

  • 1、标注数据
    • 1.1、标注
    • 1.2、生成训练列表文件train.txt
    • 1.3、转换数据标注格式
  • 2、训练数据整理
    • 2.1、修改train.txt路径
    • 2.2、修改yolov3.cfg
    • 2.3、obj.name和obj.data
    • 2.4、训练脚本文件trian.sh
    • 2.5、测试脚本文件test.sh
  • 3、训练

本文对应的脚本文件和程序下载链接 darkent yolo自定义数据标注训练全流程说明示例,也可发私信获取。

1、标注数据

使用labelImg.exe工具对数据进行标注,默认使用voc的数据集格式,之后使用脚本转换为yolo专用的数据格式,并且生成一些训练依赖的准备数据。
在这里插入图片描述

准备工作:

  • (1)执行脚本 0——清理train文件下的img、xml、txt文件文件 ,将上次训练的所有数据删除(需要的话进行备份)
  • (2)复制训练图片到 train/JPEGImages 目录下 (图片过大建议等比缩放到1080以下)

exe和train的目录结构
在这里插入图片描述在这里插入图片描述

1.1、标注

使用脚本 1——LabelImg.cmd 打开工具,
按钮 Open Dir 选择待标注的图片数据目录 这里为 to_path/train/JPEGImages
按钮 Change Save Dir,选择存放标注文件xml目录,to_path/train/Annotations
在这里插入图片描述

加载图片之后,点击 Edit label按钮 标注目标的类别标签
在这里插入图片描述
按键 a 、d 切换图片, 按键 w 开始绘制标准框, ctrl+s 保存当前标注图片数据。

详细参考互联网内容,搜索 yolov3标注自定义数据。标注完成后,目录下train/Annotations会得到每一张图片对应的的xml标注文件,
在这里插入图片描述在这里插入图片描述

1.2、生成训练列表文件train.txt

训练需要给出所有图片的绝对地址,这里注意,标注机器可能和后期训练不在一个机器,路径会变化,后期根据实际路径进行批量修改替换。

执行脚本 2——Label_generate_traintxt.cmd 即可,会在当前目录生成train.txt文件。如下
在这里插入图片描述
红框目录可能变化,可以通过修改脚本的参数,自动生成
在这里插入图片描述

1.3、转换数据标注格式

先修改脚本文件 exe/label_conver_voc_2_yolo.py 中的classes 列表为标注工具中的标签名,例如有4个标签 car,huoche,guache和keche,那么将之前行用#注释,修改如下图。
在这里插入图片描述

修改后保存之后,执行脚本 3——Label_conver_voc_2_yolo.cmd ,之后可以在目录 train\labels看到txt格式的标注文件
在这里插入图片描述
在这里插入图片描述
格式为 标签序号 x y w h :这里标签序号从0开始,值为python脚本中 classes 列表的下标;位置为相对图像宽高尺寸的百分比例。

这里实际是通过标注文件目录下train/Annotations的xml文件转换得到,一一对应(txt,xml,图片都要一一对应)。

可能出现的问题:

  • LabelImage.exe标注得到的xml文件中图像宽高尺寸为0,导致txt转换错误,训练时报错。脚本使用PIL库增加验证修复环节,保证转换正确无误。

    在这里插入图片描述
  • 提示标签不存在:因为标注时lable输入错误,和脚本中的classes列表元素不一致

2、训练数据整理

在训练机器上的训练工具目录darknet下,拷贝标注文件目录train和列表文件train.txt新建训练目录如data-vehicle-0926-772,这里的目录结构如下
在这里插入图片描述在这里插入图片描述

2.1、修改train.txt路径

修改图片列表文件路径的真实路径,前面 1.2、 生成训练列表文件train.txt 已经说明。注意要换行格式,要求unix、utf8格,否可能在训练出错、但会提示STB类似错误。

2.2、修改yolov3.cfg

从darknet目录复制一份原始yolov3.cfg文件到当前训练目录。修改地方有两快

  • (1) 修改网络结构参数

    找到cfg文件中的 所有[yolo]标签段(共3个),修改红框中的数据
    在这里插入图片描述
    classes修改为标注时的类别数量,例如4类,filters修改 (类别数+5)*3,这里就修改为(4+5)*3 = 27。(后期其他类别对应修改即可)
    注意,一共是修改3组数据。

  • (2) 修改训练参数

    这里参数比较专业,在大量数据训练时,需要不断调参设计。当前我们使用默认设计。训练时使用 batch=64, subdivision=16,如果机器GPU性能好显存足够,可以将subdivision降低为8、4、2等(3090可以修改为2)。
    在这里插入图片描述

2.3、obj.name和obj.data

照着修改即可
在这里插入图片描述

2.4、训练脚本文件trian.sh

脚本内容为

cd ..
./darknet detector train data-vehicle-0926-772/obj.data data-vehicle-0926-772/yolov3.cfg /yolov3.cfg darknet53.conv.74 -i 0 -clear

例如机器上已有的脚本文件为
在这里插入图片描述

2.5、测试脚本文件test.sh

(训练完成后进行)使用训练的指定模型文件对图片进行测试,并生成结果图片。
例如在服务器的darknet目录下执行

./darknet detector test car-0612-400/obj.data car-0612-400/yolov3-tiny.cfg car-0612-400/weights/yolov3-tiny_best.weights  -i 0 -thresh 0.25 ./car-0612-400/train/JPEGImages/11.jpg -ext_output

控制台会打印检测的结果,运行完成后,会生成一个 predictions.jpg 的文件,
在这里插入图片描述

3、训练

训练数据目录下,执行train.sh训练脚本即可,根据控制台训练数据输入检查是否存在错误,进行针对性调整。
正式训练时,后台执行,使用 命令 nohup train.sh & 即可, 生成nohup.out 的训练日志。

在这里插入图片描述
训练中间的输出,关注中间的 avg loss,直观上一般越低越好。
在这里插入图片描述
后面可以使用脚本drawLossPlot.py绘制loss(train)曲线
在这里插入图片描述

相关文章:

darknet yolo标注、训练详细说明

文章目录 1、标注数据1.1、标注1.2、生成训练列表文件train.txt1.3、转换数据标注格式 2、训练数据整理2.1、修改train.txt路径2.2、修改yolov3.cfg2.3、obj.name和obj.data2.4、训练脚本文件trian.sh2.5、测试脚本文件test.sh 3、训练 本文对应的脚本文件和程序下载链接 darke…...

chatgpt赋能python:Python如何产生随机整数?

Python如何产生随机整数? Python是一种高级编程语言。它允许程序员轻松地创建各种类型的应用程序,包括生成随机整数。本文将介绍如何在Python中使用内置的随机数函数来生成随机整数。 random模块 Python中的random模块提供了生成随机数的函数。这些函…...

大话Stable-Diffusion-Webui-客制化主题(四)

文章目录 目标效果开始重要说明单选框以及复选框图标样式更改gradio主题构建器上传主题方式代码上传主题方式目标 在DIY的主题中更改gradio单选框组件以及复选框组件的勾选后图标样式 效果 开始 笔者在使用gradio的主题构建器的过程中发现,gradio的复选框以及单选框组件勾选…...

Excel函数VLOOKUP常用方法

一、基础用法 1、精确匹配 公式:VLOOKUP(待匹配值,查找范围,范围列数,查找方式) 定义好要输出表的表头和第一列,第一列即为要查找和匹配的父内容,在第二列输入公式,被查找表中一定也要将待查…...

systemV的工作原理+原理代码

概念 我们知道进程间的通信有管道的方式进程通信管道制作_云的小站的博客-CSDN博客 但是我们的管道通信其实属于一种取巧的方式,利用了打开的文件可读写的特性上,两个进程对此分别进行读写操作就会产生所谓的通信现象,但是外面的管道依旧得…...

Kubeflow--TFJob实现机制学习

2023暑期学习 TF Job实际场景应用Vertex AI TF Job 链接 https://www.kubeflow.org/docs/components/training/tftraining/ https://developer.aliyun.com/article/601779 TFJob实际上遵循Kubernetes标准的API定义. TFJob 对象 apiVersion --> string --> api版本&…...

百度出品,Nature重磅 -- 优化的mRNA设计算法可改善mRNA的稳定性和免疫原性

摘要 尽管mRNA疫苗已用于COVID-19的预防,但仍然面临不稳定和易降解的风险,这是mRNA疫苗存储、配送、效价等面临的重要障碍。先前的研究已表明,增加二级结构可延长mRNA的半衰期,再加上选择优化的密码子,可改善蛋白表达。…...

CKA 01_docker部署Kubernetes 部署docker 使用kubeadm引导集群 安装Pod网络

文章目录 1. 虚拟机步骤2. Docker 部署 Kubernetes2.1 部署 docker2.1.1 环境要求2.1.2 安装 docker 引擎2.1.3 worker 节点对 master 节点免密2.1.4 设定 docker 开机自启2.1.5 打开桥接,查看桥接流量2.1.6 设定 systemd 方式管理 cgroup2.1.7 docker部署完成2.1.8…...

Redis的使用规范小建议

Redis 核心技术与实战 笔记 作者: 蒋德钧 毕竟,高性能和节省内存,是我们的两个目标,只有规范地使用Redis,才能真正实现这两个目标。如果说之前的内容教会了你怎么用,那么今天的内容,就是帮助你用…...

操作受限的线性表——栈

本文主要内容:本文主要讲解栈的基本概念、基本操作和栈的顺序、链式实现。 目录 栈一、栈的基本概念1、基本概念2、基本操作 二、栈的顺序存储结构1、顺序栈的实现2、顺序栈的基本运算1)初始化2)判栈空3)进栈4)出栈5&a…...

C++基类指针或引用指向或引用派生类对象(实现动态多态四种手段)父类指针访问子类成员变量(需要dynamic_cast)

文章目录 背景多态示例:父类指针指向子类对象父类指针指向子类对象,如何通过父类指针访问到子类特定的成员变量实现动态多态的四种手段:基类的指针或引用指向或引用一个派生类对象(new或不new) 背景 比如有父类Animal…...

WTM框架运行报错0308010C:digital envelope routines::unsupported

WTM框架运行报错0308010C:digital envelope routines::unsupported 错误描述报错原因解决方式 错误描述 我所使用WTM搭建的程序是选择的.net5.0Vue前后端分离的方式,项目结构选择的是“各层分离的多个项目”;本人并非初次使用WTM平台框架搭建项目&#…...

(二)CSharp-索引器

1、索引器定义 什么是索引器 索引器(indexer)是这样一种成员:它使对象能够用与数组相同的方式(即使用下标)进行索引 索引器的声明参见 C# 语言定义文档注意:没有静态索引器 索引器是一组 get 和 set 访问…...

配合AI刷leetcode 实现1170

题目如下: 1170. 比较字符串最小字母出现频次 难度中等 75 定义一个函数 f(s),统计 s 中(按字典序比较)最小字母的出现频次 ,其中 s 是一个非空字符串。 例如,若 s "dcce",那么…...

English Learning - L3 作业打卡 Lesson5 Day36 2023.6.9 周五

English Learning - L3 作业打卡 Lesson5 Day36 2023.6.9 周五 引言🍉句1: So next time you are on a train, look around and see what other people are reading, but dont jump to any conclusions.成分划分弱读连读爆破语调 🍉句2: You will probab…...

前端框架笔记

Vue.js的安装 安装Vue.js有两种方法&#xff1a; &#xff08;1&#xff09;类似于Bootstrap或jQuery&#xff0c;直接通过HTML文件中的标签引用。为了方便开发者使用&#xff0c;Vue.js提供了相关的CDN&#xff0c;通过如下代码可以引用最新版本的Vue.js&#xff1a; <sc…...

详细设计文档

1. 引言 1.1 目的 1.2 范围 1.3 定义、缩略语和缩写 1.4 参考文献 1.5 概述 2. 系统架构设计 2.1 总体架构 2.2 模块划分 2.3 数据流程设计 2.4 接口设计 3. 模块详细设计 3.1 登录模块详细设计 3.1.1 类设计 3.1.2 方法设计 3.1.3 数据库表设计 3.1.4 界面设计 3.2 文章管理模…...

Java011——Java数据类型转换(基本数据类型)

回顾&#xff1a;Java八大基本数据类型 大类 类型名称 关键字 占用内存 取值范围 --------------------------------------------------------------------------------------------|字节型 byte 1 字节 -128~127 整型 |短整型 short 2 字节 -32768~32…...

mybatis-plus用法(二)

(5条消息) mybatis-plus用法&#xff08;一&#xff09;_渣娃工程师的博客-CSDN博客 AR模式 ActiveRecord模式&#xff0c;通过操作实体对象&#xff0c;直接操作数据库表。与ORM有点类似。 示例如下 让实体类User继承自Model package com.example.mp.po; import com.bao…...

SQL笔记-存储过程+循环

存储过程循环使用方法 Oracle Oracle中存储过程的循环使用方法如下&#xff1a; DECLAREi NUMBER; BEGINi : 1;WHILE i < 10 LOOPDBMS_OUTPUT.PUT_LINE(i || i);i : i 1;END LOOP; END;其中&#xff0c;DECLARE用于声明变量&#xff0c;BEGIN和END用于标识存储过程的开始…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...