day44【代码随想录】动态规划之零钱兑换II、组合总和 Ⅳ、零钱兑换
文章目录
- 前言
- 一、零钱兑换II(力扣518)
- 二、组合总和 Ⅳ(力扣377)
- 三、零钱兑换(力扣322)
- 总结
前言
1、零钱兑换II
2、组合总和 Ⅳ
3、零钱兑换
一、零钱兑换II(力扣518)
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
类似与之前的目标和问题(01背包)求有多少种组合方式
目标和

分析
题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?
例如示例一:
5 = 2 + 2 + 1
5 = 2 + 1 + 2
这是一种组合,都是 2 2 1。
如果问的是排列数,那么上面就是两种排列了。
组合不强调元素之间的顺序,排列强调元素之间的顺序
每个硬币可以重复使用,完全背包问题
整数amount 相当于完全背包问题中的背包容量
组合数:不强调元素之间的顺序
动规五部曲:
1、确定dp数组以及下标的含义
dp[j] :表示总金额为j时有dp[j]种方式
2、确定递推公式
dp[j] += dp[j - coins[i]];
3、dp数组如何初始化
dp[0]一定是1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
4、确定遍历顺序
外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)===组合数
是否可以颠倒?
不可以
外层for遍历背包(金钱总额),内层for循环遍历物品(钱币) ===排列数
class Solution {public int change(int amount, int[] coins) {int[] dp = new int[amount+1];//初始化 类似于目标和问题dp[0]=1;for(int i = 0; i<coins.length;i++){for(int j=coins[i];j<=amount;j++){dp[j] += dp[j-coins[i]];}}return dp[amount];}
}

二、组合总和 Ⅳ(力扣377)
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

分析 :
元素可以重复使用 --> 完全背包问题
求排列数 -->遍历顺序 外层循环背包容量 内层循环元素个数
class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target+1];dp[0]=1;for(int j=0;j<=target;j++){for(int i = 0;i<nums.length;i++){if(j-nums[i]>=0){dp[j] += dp[j-nums[i]]; }}} return dp[target];}
}

三、零钱兑换(力扣322)
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。

分析:
每种硬币的数量是无限的,可以看出是典型的完全背包问题。
1、确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
2、确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j]
dp[j] = Math.min(dp[j], dp[j-coins[j]]+1)
3、dp数组初始化
在测试用例中可以发现 dp[0] = 0;
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
4、确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];int max = Integer.MAX_VALUE;//初始化为最大值for(int i=0;i<dp.length;i++){dp[i] = max;}dp[0] = 0;//遍历for(int i=0;i<coins.length;i++){for(int j=coins[i];j<=amount;j++){if(dp[j-coins[i]]!=max){dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount] == max? -1:dp[amount];}
}

总结
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品
相关文章:
day44【代码随想录】动态规划之零钱兑换II、组合总和 Ⅳ、零钱兑换
文章目录前言一、零钱兑换II(力扣518)二、组合总和 Ⅳ(力扣377)三、零钱兑换(力扣322)总结前言 1、零钱兑换II 2、组合总和 Ⅳ 3、零钱兑换 一、零钱兑换II(力扣518) 给你一个整数…...
计算机网络第1章(概述)学习笔记
❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得关注、点赞、收藏、…...
GPT-3(Language Models are Few-shot Learners)简介
GPT-3(Language Models are Few-shot Learners) 一、GPT-2 1. 网络架构: GPT系列的网络架构是Transformer的Decoder,有关Transformer的Decoder的内容可以看我之前的文章。 简单来说,就是利用Masked multi-head attention来提取文本信息&a…...
容器安全风险and容器逃逸漏洞实践
本文博客地址:https://security.blog.csdn.net/article/details/128966455 一、Docker存在的安全风险 1.1、Docker镜像存在的风险 不安全的第三方组件:用户自己的代码依赖若干开源组件,这些开源组件本身又有着复杂的依赖树,甚至…...
2023年美赛B题-重新想象马赛马拉
背景 肯尼亚的野生动物保护区最初主要是为了保护野生动物和其他自然资源资源。肯尼亚议会于2013年通过了《野生动物保护和管理法》提供更公平的资源共享,并允许替代的、以社区为基础的管理工作[1]。此后,肯尼亚增加了修正案,以解决立法中的空…...
Docker常用命令总结
目录 一、帮助启动类命令 (1)启动docker (2)停止docker (3)重启docker (4)查看docker (5)设置开机自启 (6)查看docker概要信息…...
mac环境,安装NMP遇到的问题
一 背景 项目开发中,公司项目需要使用本地的环境运行,主要是php这块的业务。没有使用docker来处理,重新手动撸了一遍。记录下其中遇到的问题; 二 遇到的问题 2.1 Nginx的问题 brew install nginx后,启动nginx,报错如下:nginx: [emerg] no "ssl_certificate" …...
Web Worker 与 SharedWorker 的介绍和使用
目录一、Web Worker1 Web Worker 是什么2 Web Worker 使用3 简单示例二、SharedWorker2.1 SharedWorker 是什么2.2 SharedWorker 的使用方式2.3 多页面数据共享的例子一、Web Worker 1 Web Worker 是什么 Web Worker是 HTML5 标准的一部分,这一规范定义了一套 API…...
React:Redux和Flux
React,用来构建用户界面,它有三个特点: 作为view,构建上用户界面虚拟DOM,目的就是高性能DOM渲染【diff算法】、组件化、多端同构单向数据流,是一种自上而下的渲染方式。Flux 在一个React应用中,UI部分是由无数个组件嵌套构成的,组件和组件之间就存在层级关系,也就是父…...
TypeScript 学习之Class
基本使用 class Greeter {// 属性greeting: string;// 构造函数constructor(message: string) {// 用this 访问类的属性this.greeting message;}// 方法greet() {return Hello, this.greeting;} } // 实例化 let greeter new Greeter(World);声明了一个Greeter类ÿ…...
doris - 数仓 拉链表 按天全量打宽表性能优化
数仓 拉链表 按天全量打宽性能优化现状描述优化现状描述 1、业务历史数据可以变更 2、拉链表按天打宽 3、拉链表模型分区字段设计不合理,通用的过滤字段没有作为分区分桶字段 4、拉链表表数据量略大、模型数据分区不合理和服务器资源限制,计算任务执行超…...
服务器虚拟化及优势
服务器虚拟化是从一台物理服务器创建多个服务器实例的过程。每个服务器实例代表一个隔离的虚拟环境。在每个虚拟环境中,都可以运行单独的操作系统。 1.更有效的资源调配 使用虚拟化技术大大节省了所占用的空间,减少了数据中心里服务器和相关硬件的数量。…...
华为ensp模拟校园网/企业网实例(同城灾备及异地备份中心保证网络安全)
文章简介:本文用华为ensp对企业网络进行了规划和模拟,也同样适用于校园、医院等场景。如有需要可联系作者,可以根据定制化需求做修改。作者简介:网络工程师,希望能认识更多的小伙伴一起交流,私信必回。一、…...
git命令篇(持续更新中)
首先介绍这个网页:https://learngitbranching.js.org/?localezh_CN --提交命令 git commit --创建分支 git branch <分支名> --切换分支 git checkout <分支名> --合并分支 (合并到主分支去,把我合并到谁的身上去) 自己写的分支合并到主线…...
用记事本实现“HelloWorld”输出
一、在任意文件夹中创建一个新的文本文档文件并写入以下代码 public class Hello{public static void main (String[] args){System.out.print("Hello,World!");} } 二、修改文件名称及文件类型为 Hello.java 特别注意:文件命名必须与代码中类的名称相同…...
Python基础1
1. 注释 单行注释:以#开头。一般建议注释和内容用空格隔开。 多行注释:以一对三个双引号括起来的内容是注释。“““示例注释”””。 2. 数据类型 验证数据类型的方法:type(被查看类型的数据)。 注意:…...
4.2 双点双向路由重发布
1. 实验目的 熟悉双点双向路由重发布的应用场景掌握双点双向路由重发布的配置方法2. 实验拓扑 双点双向路由重发布如图4-6所示: 图4-6:双点双向路由重发布 3. 实验步骤 IP地址的配置R1的配置 <Huawei>system-v…...
AcWing《蓝桥杯集训·每日一题》—— 3768 字符串删减
AcWing《蓝桥杯集训每日一题》—— 3768. 字符串删减 文章目录AcWing《蓝桥杯集训每日一题》—— 3768. 字符串删减一、题目二、解题思路三、代码实现本次博客我是通过Notion软件写的,转md文件可能不太美观,大家可以去我的博客中查看:北天的 …...
第五天笔记
1. 简述图片验证码使用流程? 1.前段生成UUID随机值,作为GET请求参数 2.后端试图进行判断,调用工具类来生成图片验证码和内容 3.将验证码内容使用redis保存到本地,前端传入的uuid作为key, 4.在前段输入获取到的图片验证码,想后端发…...
如何使用ArcGIS进行地理配准
1.概述 对于GIS数据而言,坐标信息是灵魂,有了坐标信息之后才能和别的数据结合使用,之前有介绍过矢量数据定义坐标信息的方法,针对栅格图,这里为大家介绍一下通过地理配准增加坐标信息的方法,希望能对你有所…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
