当前位置: 首页 > news >正文

图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index

LLM 如火如荼地发展了大半年,各类大模型和相关框架也逐步成型,可被大家应用到业务实际中。在这个过程中,我们可能会遇到一类问题是:现有的哪些数据,如何更好地与 LLM 对接上。像是大家都在用的知识图谱,现在的图谱该如何借助大模型,发挥更大的价值呢?

在本文,我便会和大家分享下如何利用知识图谱构建更好的 In-context Learning 大语言模型应用。

此文最初以英文撰写的,而后我麻烦 ChatGPT 帮我翻译成了英文。下面是翻译的 prompt:

“In this thread, you are a Chinese Tech blogger to help translate my blog in markdown from English into Chinese, the blog style is clear, fun yet professional. I will paste chapters in markdown to you and you will send back the translated and polished version.”

LLM 应用的范式

作为认知智能的一大突破,LLM 已经改变了许多行业,以一种我们没有预料到的方式进行自动化、加速和启用。我们每天都会看到新的 LLN 应用被创建出来,我们仍然在探索如何利用这种魔力的新方法和用例。

将 LLM 引入流程的最典型模式之一,是要求 LLM 根据专有的/特定领域的知识理解事物。目前,我们可以向 LLM 添加两种范式以获取这些知识:微调——fine-tune上下文学习—— in-context learning

微调是指对 LLM 模型进行附加训练,以增加额外的知识;而上下文学习是在查询提示中添加一些额外的知识。

据观察,目前由于上下文学习比微调更简单,所以上下文学习比微调更受欢迎,在这篇论文中讲述了这一现象:https://arxiv.org/abs/2305.16938。

下面,我来分享 NebulaGraph 在上下文学习方法方面所做的工作。

Llama Index:数据与 LLM 之间的接口

上下文学习

上下文学习的基本思想是使用现有的 LLM(未更新)来处理特定知识数据集的特殊任务

例如,要构建一个可以回答关于某个人的任何问题,甚至扮演一个人的数字化化身的应用程序,我们可以将上下文学习应用于一本自传书籍和 LLM。在实践中,应用程序将使用用户的问题和从书中"搜索"到的一些信息构建提示,然后查询 LLM 来获取答案。

┌───────┐         ┌─────────────────┐         ┌─────────┐
│       │         │ Docs/Knowledge  │         │         │
│       │         └─────────────────┘         │         │
│ User  │─────────────────────────────────────▶   LLM   │
│       │                                     │         │
│       │                                     │         │
└───────┘                                     └─────────┘

在这种搜索方法中,实现从文档/知识(上述示例中的那本书)中获取与特定任务相关信息的最有效方式之一是利用嵌入(Embedding)。

嵌入(Embedding)

嵌入通常指的是将现实世界的事物映射到多维空间中的向量的方法。例如,我们可以将图像映射到一个(64 x 64)维度的空间中,如果映射足够好,两个图像之间的距离可以反映它们的相似性。

嵌入的另一个例子是 word2vec 算法,它将每个单词都映射到一个向量中。例如,如果嵌入足够好,我们可以对它们进行加法和减法操作,可能会得到以下结果:

vec(apple) + vec(pie) ≈ vec("apple apie"),或者向量测量值 vec(apple) + vec(pie) - vec("apple apie") 趋近于 0:

|vec(apple) + vec(pie) - vec("apple apie")| ≈ 0

类似地,“pear” 应该比 “dinosaur” 更接近 “apple”:|vec(apple) - vec(pear)| < |vec(apple) - vec(dinosaur)|

有了这个基础,理论上我们可以搜索与给定问题更相关的书籍片段。基本过程如下:

  • 将书籍分割为小片段,为每个片段创建嵌入并存储它们
  • 当有一个问题时,计算问题的嵌入
  • 通过计算距离找到与书籍片段最相似的前 K 个嵌入
  • 使用问题和书籍片段构建提示
  • 使用提示查询 LLM
                  ┌────┬────┬────┬────┐                  │ 1  │ 2  │ 3  │ 4  │                  ├────┴────┴────┴────┤                  │  Docs/Knowledge   │                  
┌───────┐         │        ...        │       ┌─────────┐
│       │         ├────┬────┬────┬────┤       │         │
│       │         │ 95 │ 96 │    │    │       │         │
│       │         └────┴────┴────┴────┘       │         │
│ User  │─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─▶   LLM   │
│       │                                     │         │
│       │                                     │         │
└───────┘    ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐  └─────────┘│          ┌──────────────────────────┐        ▲     └────────┼▶│  Tell me ....., please   │├───────┘     └──────────────────────────┘              │ ┌────┐ ┌────┐               │             │ 3  │ │ 96 │                             │ └────┘ └────┘               │             ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 

Llama Index

Llama Index 是一个开源工具包,它能帮助我们以最佳实践去做 in-context learning:

  • 它提供了各种数据加载器,以统一格式序列化文档/知识,例如 PDF、维基百科、Notion、Twitter 等等,这样我们可以无需自行处理预处理、将数据分割为片段等操作。
  • 它还可以帮助我们创建嵌入(以及其他形式的索引),并以一行代码的方式在内存中或向量数据库中存储嵌入。
  • 它内置了提示和其他工程实现,因此我们无需从头开始创建和研究,例如,《用 4 行代码在现有数据上创建一个聊天机器人》。

文档分割和嵌入的问题

嵌入和向量搜索在许多情况下效果良好,但在某些情况下仍存在挑战,比如:丢失全局上下文/跨节点上下文。

想象一下,当查询"请告诉我关于作者和 foo 的事情",在这本书中,假设编号为 1、3、6、19-25、30-44 和 96-99 的分段都涉及到 foo 这个主题。那么,在这种情况下,简单地搜索与书籍片段相关的前 k 个嵌入可能效果不尽人意,因为这时候只考虑与之最相关的几个片段(比如 k = 3),会丢失了许多上下文信息。

┌────┬────┬────┬────┐
│ 1  │ 2  │ 3  │ 4  │
├────┴────┴────┴────┤
│  Docs/Knowledge   │
│        ...        │
├────┬────┬────┬────┤
│ 95 │ 96 │    │    │
└────┴────┴────┴────┘

而解决、缓解这个问题的方法,在 Llama Index 工具的语境下,可以创建组合索引和综合索引。

其中,向量存储(VectorStore)只是其中的一部分。除此之外,我们可以定义一个摘要索引、树形索引等,以将不同类型的问题路由到不同的索引,从而避免在需要全局上下文时错失它。

然而,借助知识图谱,我们可以采取更有意思的方法:

知识图谱

知识图谱这个术语最初由谷歌在 2012 年 5 月提出,作为其增强搜索结果,向用户提供更多上下文信息的一部分实践。知识图谱旨在理解实体之间的关系,并直接提供查询的答案,而不仅仅返回相关网页的列表。

知识图谱是一种以图结构形式组织和连接信息的方式,其中节点表示实体,边表示实体之间的关系。图结构允许用户高效地存储、检索和分析数据。

它的结构如下图所示:

现在问题就来了,上面说过知识图谱能帮忙搞定文档分割和嵌入的问题。那么,知识图谱到底能怎么帮到我们呢?

嵌入和知识图谱的结合

这里的基本实现思想是,作为信息的精炼格式,知识图谱可切割的数据颗粒度比我们人工的分割的更细、更小。将知识图谱的小颗粒数据与原先人工处理的大块数据相结合,我们可以更好地搜索需要全局/跨节点上下文的查询。

下面来做个题:请看下面的图示,假设提问同 x 有关,所有数据片段中有 20 个与 x 高度相关。现在,除了获取主要上下文的前 3 个文档片段(比如编号为 1、2 和 96 的文档片段),我们还从知识图谱中对 x 进行两次跳转查询,那么完整的上下文将包括:

  • 问题:“Tell me things about the author and x”
  • 来自文档片段编号 1、2 和 96 的原始文档。在 Llama Index 中,它们被称为节点 1、节点 2 和节点 96。
  • 包含 “x” 的知识图谱中的 10 个三元组,通过对 x 进行两层深度的图遍历得到:
    • x -> y(来自节点 1)
    • x -> a(来自节点 2)
    • x -> m(来自节点 4
    • x <- b-> c(来自节点 95
    • x -> d(来自节点 96)
    • n -> x(来自节点 98
    • x <- z <- i(来自节点 1 和节点 3
    • x <- z <- b(来自节点 1 和节点 95
┌──────────────────┬──────────────────┬──────────────────┬──────────────────┐
│ .─.       .─.    │  .─.       .─.   │            .─.   │  .─.       .─.   │
│( x )─────▶ y )   │ ( x )─────▶ a )  │           ( j )  │ ( m )◀────( x )  │
│ `▲'       `─'    │  `─'       `─'   │            `─'   │  `─'       `─'   │
│  │     1         │        2         │        3    │    │        4         │
│ .─.              │                  │            .▼.   │                  │
│( z )◀────────────┼──────────────────┼───────────( i )─┐│                  │
│ `◀────┐          │                  │            `─'  ││                  │
├───────┼──────────┴──────────────────┴─────────────────┼┴──────────────────┤
│       │                      Docs/Knowledge           │                   │
│       │                            ...                │                   │
│       │                                               │                   │
├───────┼──────────┬──────────────────┬─────────────────┼┬──────────────────┤
│  .─.  └──────.   │  .─.             │                 ││  .─.             │
│ ( x ◀─────( b )  │ ( x )            │                 └┼▶( n )            │
│  `─'       `─'   │  `─'             │                  │  `─'             │
│        95   │    │   │    96        │                  │   │    98        │
│            .▼.   │  .▼.             │                  │   ▼              │
│           ( c )  │ ( d )            │                  │  .─.             │
│            `─'   │  `─'             │                  │ ( x )            │
└──────────────────┴──────────────────┴──────────────────┴──`─'─────────────┘

显然,那些(可能很宝贵的)涉及到主题 x 的精炼信息来自于其他节点以及跨节点的信息,都因为我们引入知识图谱,而能够被包含在 prompt 中,用于进行上下文学习,从而克服了前面提到的问题。

Llama Index 中的知识图谱进展

最初,William F.H.将知识图谱的抽象概念引入了 Llama Index,其中知识图谱中的三元组与关键词相关联,并存储在内存中的文档中,随后Logan Markewich还增加了每个三元组的嵌入。

最近的几周中,我一直在与 Llama Index 社区合作,致力于将 “GraphStore” 存储上下文引入 Llama Index,从而引入了知识图谱的外部存储。首个知识图谱的外部存储是对接开源分布式图数据库 NebulaGraph,目前在我的努力下已经实现了。

在实现过程中,还引入了遍历图的多个跳数选项以及在前 k 个节点中收集更多关键实体的选项,用于在知识图谱中搜索以获得更多全局上下文。上面提到的这些变更还在陆续完善中。

在大模型中引入 GraphStore 后,还可以从现有的知识图谱中进行上下文学习,并与其他索引结合使用,这也非常有前景。因为知识图谱被认为具有比其他结构化数据更高的信息密度。

本文作为开篇,讲述了一些知识图谱和 LLM 的关系。在后续的文章中,将会偏向实操同大家分享具体的知识图谱和 LLM 的应用实践。

谢谢你读完本文 (///▽///)

欢迎前往 GitHub 来阅读 NebulaGraph 源码,或是尝试用它解决你的业务问题 yo~ GitHub 地址:https://github.com/vesoft-inc/nebula 想要交流图技术和其他想法,请前往论坛:https://discuss.nebula-graph.com.cn/

相关文章:

图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index

LLM 如火如荼地发展了大半年&#xff0c;各类大模型和相关框架也逐步成型&#xff0c;可被大家应用到业务实际中。在这个过程中&#xff0c;我们可能会遇到一类问题是&#xff1a;现有的哪些数据&#xff0c;如何更好地与 LLM 对接上。像是大家都在用的知识图谱&#xff0c;现在…...

SpringBoot自动配置、启动器原理爆肝解析(干货满满)

文章目录 前言一、SpringBoot优势概要二、SpringBoot自动配置1. ☠注意☠2.自动配置详解 三、Starter&#xff08;场景启动器&#xff09;原理总结 前言 本文详细解析面试重点—SpringBoot自动配置原理、场景启动器原理&#xff0c;深入源码&#xff0c;直接上干货、绝不拖泥带…...

chrome扩展控制popup页面动态切换

文章目录 1、通过控制元素的显示隐藏达到popup页面切换的效果2、通过监听页面重新加载完成不同popup的切换3、直接修改popup页面location.href&#xff0c;无需刷新页面 1、通过控制元素的显示隐藏达到popup页面切换的效果 下面在mv2版本的API下完成 实际上通过控制页面元素实…...

【AI】《动手学-深度学习-PyTorch版》笔记(三):PyTorch常用函数

AI学习目录汇总 1、torch.arange 返回一维张量(一维数组),官网说明,常见的三种用法如下 输入:torch.arange(5) 输出:tensor([0, 1, 2, 3, 4]) 输入:torch.arange(5, 16) 输出:tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) 输入:torch.arange(1, 25, 2) …...

某文化馆三维建模模型-glb格式-三维漫游-室内导航测试

资源描述 某文化馆某个楼层的三维建模模型&#xff0c;glb格式&#xff0c;适用于three.js开发&#xff0c;可用来做一些三维室内漫游测试和室内导航测试 资源下载地址...

网络安全 Day19-计算机网络基础知识04(网络协议)

计算机网络基础知识04&#xff08;网络协议&#xff09; 1. ARP1.1 ARP通讯原理1.2 arp欺骗1.3 ARP欺骗与预防1.4 排查ARP病毒 2. DHCP工作原理&#xff08;自动分配内网IP&#xff09;3. TCP协议三次握手、四次挥手原理4. DNS协议工作原理 1. ARP Linux查看arp&#xff1a;ar…...

Verilog语法学习——LV5_位拆分与运算

LV5_位拆分与运算 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 题目描述&#xff1a; 现在输入了一个压缩的16位数据&#xff0c;其实际上包含了四个数据…...

❤️创意网页:创意动态画布~缤纷移动涂鸦~图片彩色打码

✨博主&#xff1a;命运之光 &#x1f338;专栏&#xff1a;Python星辰秘典 &#x1f433;专栏&#xff1a;web开发&#xff08;简单好用又好看&#xff09; ❤️专栏&#xff1a;Java经典程序设计 ☀️博主的其他文章&#xff1a;点击进入博主的主页 前言&#xff1a;欢迎踏入…...

数值分析第六章节 用Python实现解线性方程组的迭代法

参考书籍&#xff1a;数值分析 第五版 李庆杨 王能超 易大义编 第5章 解线性方程组的迭代法 文章声明&#xff1a;如有发现错误&#xff0c;欢迎批评指正 文章目录 迭代法的基本概念雅可比迭代法与高斯-塞格尔迭代法雅可比迭代法高斯-塞格尔迭代法 迭代法的基本概念 6.1.1引言…...

【低代码专题方案】使用iPaaS平台下发数据,快捷集成MDM类型系统

01 场景背景 伴随着企业信息化建设日趋完善化、体系化&#xff0c;使用的应用系统越来越多&#xff0c;业务发展中沉淀了大量数据。主数据作为数据治理中枢&#xff0c;保存大量标准数据库&#xff0c;如何把庞大的数据下发到各个业务系统成了很棘手的问题。 传统的数据下发方…...

驱动开发 day3 (模块化驱动启动led,蜂鸣器,风扇,震动马达)

模块化驱动启动led,蜂鸣器,风扇,震动马达并加上Makefile 封装模块化驱动&#xff0c;可自由安装卸载驱动&#xff0c;便于驱动更新(附图) 1.安装模块驱动同时初始化各个设备并使能 2.该驱动会自动创建驱动节点. 3.通过c函数程序输入控制各个设备 4.卸载模块驱动 //编译驱动…...

数据结构与算法基础-学习-27-图之最短路径之Dijkstra(迪杰斯特拉)算法

一、最短路径应用案例 例如从北京到上海旅游&#xff0c;有多条路可以到目的地&#xff0c;哪条路线最短&#xff0c;哪条路线最省钱&#xff0c;就是典型的最短路径问题。 二、最短路径问题分类 最短路径问题可以分为两类&#xff0c;第一类为&#xff1a;两点间最短路径。第…...

Windows Server 2012 能使用的playwright版本

由于在harkua_bot里面使用到了playwright&#xff0c;我的服务器又是Windows Server 2012 R2&#xff0c;最新版playwright不支持Windows Server 2012 R2&#xff0c;支持Windows Server 2016以上&#xff0c;所以有了这个需求 https://cdn.npmmirror.com/binaries/playwright…...

css实现溢出变为省略号

单行文本溢出省略 text-overflow&#xff1a;规定当文本溢出时&#xff0c;显示省略符号来代表被修剪的文本 white-space&#xff1a;设置文字在一行显示&#xff0c;不能换行 overflow&#xff1a;文字长度超出限定宽度&#xff0c;则隐藏超出的内容overflow设为hidden&#…...

nginx如何配置两个服务器的连接

nginx 中通过server_name listen的方式配置多个服务器 nginx配置两个站点的windows操作方法&#xff0c;双域名双站点...

Linux环境Arduino IDE中配置ATOM S3

linux选择ubuntu发行版。 硬件设备有多小呢&#xff1a; 功能超级强大。 之前的ROS1和ROS2案例已经全部移植完成并测试结束&#xff08;三轮纯人力校验&#x1f60e;&#xff09;。 官网文档信息非常非常好&#xff1a; https://docs.m5stack.com/zh_CN/quick_start/atoms3…...

【C#】.Net Framework框架下的Authorize权限类

2023年&#xff0c;第31周&#xff0c;第3篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; 在C#的.NET Framework中&#xff0c;你可以使用Authorize类来处理权限认证。Authorize类位于System.Web.Mvc命名空间中&#xff0c;它提供了…...

C++ list底层实现原理

文章目录 一、list底层实现二、类构成三、构造函数四、迭代器五、获取第一个元素六、获取最后一个元素七、插入元素 一句话&#xff1a;list底层实现一个双向循环链表 一、list底层实现 一个双向循环链表 二、类构成 class list : protected_List_base_list_base.lsit_impl…...

C#实现数字验证码

开发环境&#xff1a;VS2019&#xff0c;.NET Core 3.1&#xff0c;ASP.NET Core API 1、建立一个验证码控制器 新建两个方法Create和Check&#xff0c;Create用于创建验证码&#xff0c;Check用于验证它是否有效。 声明一个静态类变量存放列表&#xff0c;列表中存放包含令…...

Git的常用命令以及使用场景

文章目录 1.前言2.工作区,暂存区,版本库简介3.Git的常用命令4.版本回退5.撤销修改6.删除文件7.总结 1.前言 在学习Git命令之前,需要先了解工作区,暂存区和版本库这三个概念 2.工作区,暂存区,版本库简介 在使用Git进行版本控制时&#xff0c;有三个重要的概念&#xff1a;工作…...

tcp keepalive

tcp keepalive用于检查两者之间的链路是否正常&#xff0c;或防止链路断开。 一旦建立了TCP连接&#xff0c;该连接被定义为有效&#xff0c;直到一方关闭它。一旦连接进入连接状态&#xff0c;它将无限期地保持连接状态。但实际上&#xff0c;这种联系不会无限期地持续下去。如…...

PP-Matting: AI高精度图像前景Matting,让抠图轻而易举

分割和Matting的一个重要区别是:分割返回的是像素分类标签,其结果是整型数据;而Matting返回的是属于前景或背景的概率P,从而在前景与背景交互区域产生渐变的效果,使得抠图更加自然。Matting分割模型训练完成后,对于原始图像每个位置上的像素,都将生成一个表示其前景透明…...

VUE3-01

1.选项式和组合式 选项式API&#xff1a;按照作用组织代码 组合式API&#xff1a;按照功能组织代码 2.<script setup> <template><div class"about"><h1>{{name}}</h1><button click"sayHello">测试</button>…...

分库分表之基于Shardingjdbc+docker+mysql主从架构实现读写分离(二)

说明&#xff1a;如果实现了docker部署mysql并完成主从复制的话再继续&#xff0c;本篇文章主要说明springboot配置实现Shardingjdbc进行读写分离操作。 如果没实现docker部署mysql实现主从架构的话点击我 Shardingjdbc配置介绍&#xff08;版本&#xff1a;5.3.2&#xff09;…...

Python 进阶(四):日期和时间(time、datetime、calendar 模块)

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 1. time模块1.1 获取当前时间1.2 时间休眠1.3 格式化时间 2. datetime模块2.1 获取当前…...

Transformer背景介绍

目录 Transformer的诞生Transformer的优势Transformer的市场 Transformer的诞生 论文地址 Transformer的优势 Transformer的市场...

深入理解BeanDefinition和Spring Beans

深入理解BeanDefinition和Spring Beans 引言 在Spring框架中&#xff0c;BeanDefinition和Spring Beans是非常重要的概念。BeanDefinition定义了Spring Bean的元数据&#xff0c;而Spring Beans是应用程序中的对象实例。理解BeanDefinition和Spring Beans的概念和使用方法对于…...

实验六 调度器-实验部分

目录 一、知识点 1.进程调度器设计的目标 1.1.进程的生命周期 1.2.用户进程创建与内核进程创建 1.3.进程调度器的设计目标 2.ucore 调度器框架 2.1.调度初始化 2.2.调度过程 2.2.1.调度整体流程 2.2.2.设计考虑要点 2.2.3.数据结构 2.2.4.调度框架应与调度算法无关…...

基于飞桨paddle波士顿房价预测练习模型测试代码

基于飞桨paddle波士顿房价预测练习模型测试代码 导入基础库 #paddle&#xff1a;飞桨的主库&#xff0c;paddle 根目录下保留了常用API的别名&#xff0c;当前包括&#xff1a;paddle.tensor、paddle.framework、paddle.device目录下的所有API&#xff1b; import paddle #Lin…...

只会“点点点”,凭什么让开发看的起你?

众所周知&#xff0c;如今无论是大厂还是中小厂&#xff0c;自动化测试基本是标配了&#xff0c;毕竟像双 11、618 这种活动中庞大繁杂的系统&#xff0c;以及多端发布、多版本、机型发布等需求&#xff0c;但只会“写一些自动化脚本”很难胜任。这一点在招聘要求中就能看出来。…...