当前位置: 首页 > news >正文

自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]

分类目录:《自然语言处理从入门到应用》总目录


使用少量示例

本部分的内容介绍了如何在聊天模型(Chat Models)中使用少量示例。关于如何最好地进行少量示例提示尚未形成明确的共识。因此,我们尚未固定任何关于此的抽象概念,而是使用现有的抽象概念。

交替的人工智能/人类消息

进行少量示例提示的第一种方式是使用交替的人工智能/人类消息。以下是一个示例:

from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)chat = ChatOpenAI(temperature=0)template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = HumanMessagePromptTemplate.from_template("Hi")
example_ai = AIMessagePromptTemplate.from_template("Argh me mateys")
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])chain = LLMChain(llm=chat, prompt=chat_prompt)# 从格式化的消息中获取聊天完成结果
chain.run("I love programming.")

输出:

"I be lovin' programmin', me hearty!"
系统消息

OpenAI提供了一个可选的name参数,我们也建议与系统消息一起使用以进行少量示例提示。以下是如何使用此功能的示例:

template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = SystemMessagePromptTemplate.from_template("Hi", additional_kwargs={"name": "example_user"})
example_ai = SystemMessagePromptTemplate.from_template("Argh me mateys", additional_kwargs={"name": "example_assistant"})
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)# 从格式化的消息中获取聊天完成结果
chain.run("I love programming.")

输出:

"I be lovin' programmin', me hearty!"

响应流式传输

本部分介绍了如何在聊天模型中使用流式传输:

from langchain.chat_models import ChatOpenAI
from langchain.schema import (HumanMessage,
)
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])

输出:

Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to exciteChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeVerse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes firstChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeBridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel wholeChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeOutro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关文章:

自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]

分类目录:《自然语言处理从入门到应用》总目录 使用少量示例 本部分的内容介绍了如何在聊天模型(Chat Models)中使用少量示例。关于如何最好地进行少量示例提示尚未形成明确的共识。因此,我们尚未固定任何关于此的抽象概念&#…...

Java在线OJ项目(三)、前后端交互API模块

Java在线OJ项目(三)、前后端交互API模块 1. 客户端向服务器请求所有题目 或者 单个题目前端获取所有题目获取一个题目 后端 2. 后端读取前端提交的代码,进行编译运行,返回结果前端提交代码后端处理 1. 客户端向服务器请求所有题目…...

项目——负载均衡在线OJ

目录 项目介绍开发环境所用技术项目宏观结构编写思路1. 编写compile_server1.1 编译模块编写1.2 运行功能1.3compile_runner 编译与运行1.4 编写compile_server.cpp调用compile_run模块,形成网络服务 2. 编写基于MVC的oj_server2.1 oj_server.cpp的编写2.2 oj_model…...

idea连接远程服务器上传war包文件

idea连接远程服务器&上传war包 文章目录 idea连接远程服务器&上传war包1. 连接服务器2.上传war包 1. 连接服务器 选择Tools -> Start SSH Session 添加配置 连接成功 2.上传war包 Tools -> Deployment -> Browse Remote Host 点击右侧标签,点击&…...

使用PyGWalker可视化分析表格型数据

大家好,可以想象一下在Jupyter Notebook中拥有大量数据,想要对其进行分析和可视化。PyGWalker就像一个神奇的工具,能让这项工作变得超级简单。它能获取用户的数据,并将其转化为一种特殊的表格,可以与之交互&#xff0c…...

Visual C++中的虚函数和纯虚函数(以外观设计模式为例)

我是荔园微风,作为一名在IT界整整25年的老兵,今天来说说Visual C中的虚函数和纯虚函数。该系列帖子全部使用我本人自创的对比学习法。也就是当C学不下去的时候,就用JAVA实现同样的代码,然后再用对比的方法把C学会。 直接说虚函数…...

电子元器件选型与实战应用—01 电阻选型

大家好, 我是记得诚。 这是《电子元器件选型与实战应用》专栏的第一篇文章,今天的主角是电阻,在每一个电子产品中,都少不了电阻的身影,其重要性不言而喻。 文章目录 1. 入门知识1.1 基础1.2 常用品牌1.3 电阻的种类2. 贴片电阻标识2.1 三位数标注法2.2 四位数标注法2.3 小…...

javascript 模板引擎

使用场景 在实际开发中,一般都是使用动态请求数据来更新页面,服务器端通常返回json格式的数据,正常操作是我们手动的去拼装HTML,但麻烦且容易出错,因此出现了一些用模版生成HTML的的框架叫js模板引擎如:jq…...

【数据结构】带头+双向+循环链表(DList)(增、删、查、改)详解

一、带头双向循环链表的定义和结构 1、定义 带头双向循环链表,有一个数据域和两个指针域。一个是前驱指针,指向其前一个节点;一个是后继指针,指向其后一个节点。 // 定义双向链表的节点 typedef struct ListNode {LTDataType dat…...

接口自动化测试平台

下载了大神的EasyTest项目demo修改了下<https://testerhome.com/topics/12648 原地址>。也有看另一位大神的HttpRunnerManager<https://github.com/HttpRunner/HttpRunnerManager 原地址>&#xff0c;由于水平有限&#xff0c;感觉有点复杂~~~ 【整整200集】超超超…...

【物联网】微信小程序接入阿里云物联网平台

微信小程序接入阿里云物联网平台 一 阿里云平台端 1.登录阿里云 阿里云物联网平台 点击进入公共实例&#xff0c;之前没有的点进去申请 2.点击产品&#xff0c;创建产品 3.产品名称自定义&#xff0c;按项目选择类型&#xff0c;节点类型选择之恋设备&#xff0c;联网方式W…...

PKG内容查看工具:Suspicious Package for Mac安装教程

Suspicious Package Mac版是一款Mac平台上的查看 PKG 程序包内信息的应用&#xff0c;Suspicious Package Mac版支持查看全部包内全部文件&#xff0c;比如需要运行的脚本&#xff0c;开发者&#xff0c;来源等等。 suspicious package mac使用简单&#xff0c;只需在选择pkg安…...

第16节:R语言医学分析实例:肺切除手术的Apriori关联规则分析

关联规则 肺切除手术的Apriori关联规则分析。 分析的目的是确定患有肺癌并需要接受肺切除术的患者的共病症状。 了解哪些症状是共病的可以帮助改善患者护理和药物处方。 分析类型是关联规则学习,通过探索变量之间的关联或频繁项集,尝试在大型数据集中找到见解和隐藏关系(H…...

ChatGPT+MidJourney 3分钟生成你的动画故事

chatgpt是真的火了&#xff0c;chatgpt产生了一个划时代的意义——自chatgpt起&#xff0c;AI是真的要落地了。 chatgpt能做的事情太多了&#xff0c;多到最初开发模型的程序员自己&#xff0c;也没法说得清楚chatgpt都能做啥&#xff0c;似乎只要你能想得到&#xff0c;它都有…...

在CSDN学Golang云原生(Kubernetes Pod调度)

一&#xff0c;NodeSelector定向调度 在 Kubernetes 中&#xff0c;可以使用 NodeSelector 字段来指定 Pod 调度到哪些节点上运行。NodeSelector 是一个键值对的 map&#xff0c;其中键是节点的标签名&#xff0c;值是标签值。具体步骤如下&#xff1a; 在节点上添加标签 首…...

Rust vs Go:常用语法对比(七)

题图来自 Go vs Rust: Which will be the top pick in programming?[1] 121. UDP listen and read Listen UDP traffic on port p and read 1024 bytes into buffer b. 听端口p上的UDP流量&#xff0c;并将1024字节读入缓冲区b。 import ( "fmt" "net&qu…...

【HarmonyOS】API6使用storage实现轻量级数据存储

写在前面 本篇内容基于API6 JS语言进行开发&#xff0c;通过结合轻量级数据存储开发指导的文档&#xff0c;帮助大家完成一个实际的代码案例&#xff0c;通过这个小案例&#xff0c;可以实现简单数据的存储。 参考文档&#xff1a;文档中心 1、页面布局 首先我们编写一个简单…...

Python Flask构建微信小程序订餐系统 (十二)

🔥 创建切换商品分类状态的JS文件 🔥 ; var food_act_ops={init:function(){this.eventBind();},eventBind:function(){//表示作用域var that = this;$(".wrap_search select[name=status]").change(function(){$(".wrap_search").submit();});$(&qu…...

C++——模板的作用2:特例化

目录 模板的形式&#xff1a; 一.模板的多参数应用&#xff1a; 例&#xff1a; 错误使用1&#xff1a;使用不标准的模板形参表 ​编辑 错误使用2&#xff1a;使用变量作为实参传递给函数模板 二.模板的特例化&#xff1a; 类模板&#xff1a; 针对模板的特化步骤&am…...

Python Web开发技巧VII

目录 装饰器inject_serializer 装饰器atomic rebase git 清理add的数据 查看git的当前工作目录 makemigrations文件名称 action(detailTrue, methods["GET"]) 如何只取序列化器的一个字段进行返回 Response和JsonResponse有什么区别 序列化器填表和单字段如…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...