当前位置: 首页 > news >正文

手把手教你用Python做可视化数据,还能调节动画丝滑度

数据可视化动画还在用Excel做?

现在一个简单的Python包就能分分钟搞定!

而且生成的动画也足够丝滑,效果是酱紫的:

这是一位专攻Python语言的程序员开发的安装包,名叫Pynimate

目前可以直接通过PyPI安装使用。

使用指南

想要使用Pynimate,直接import一下就行。

import pynimate as nim
输入数据后,Pynimate将使用函数Barplot()来创建条形数据动画。

而创建这种动画,输入的数据必须是pandas数据结构(如下),其中将时间列设置为索引,换句话说索引代表的是自变量。

time, col1, col2, col3
2012   1     2     1
2013   1     1     2
2014   2     1.5   3
2015   2.5   2     3.5
具体的代码形式如下:
import pandas as pddf = pd.read_csv('data'csv').set_index('time')

比如要处理具体的数据,写成代码应该是这样子的。​​​​​​​

df = pd.DataFrame(    {        "time": ["1960-01-01", "1961-01-01", "1962-01-01"],        "Afghanistan": [1, 2, 3],        "Angola": [2, 3, 4],        "Albania": [1, 2, 5],        "USA": [5, 3, 4],        "Argentina": [1, 4, 5],    }).set_index("time")

此外,要制作条形数据动画,Barplot还有三个必需的参数得注意:data、time_format和ip_freq(Interpolation frequency)。

data就是表格的数据,这里也就不再赘述。

time_format是指数据索引的时间日期格式,一般为:”%Y-%m-%d”。

最后是ip_freq,它是制作动画中比较关键的一步,通过线性插值使动画更加流畅丝滑。

一般来说,并不是所有的原始数据都适合做成动画,现在一个典型的视频是24fps,即每秒有24帧。

举个栗子🌰,下面这个表格中的数据只有三个时间点,按理说只能生成3帧视频,最终动画也只有3/24秒。

time, col1, col2
2012   1     3  
2013   2     2   
2014   3     1
这时候,ip_freq插值(线性)就开始发挥作用了,如果插值是一个季度,则得出的数据就变成了这样:
time     col1  col2
2012-01-01  1.00  3.00
2012-04-01  1.25  2.75
2012-07-01  1.50  2.50
2012-10-01  1.75  2.25
2013-01-01  2.00  2.00
2013-04-01  2.25  1.75
2013-07-01  2.50  1.50
2013-10-01  2.75  1.25
2014-01-01  3.00  1.00
具体的插值时间间隔为多久,则要视具体的数据而定,一般绘制大数据时,设置为ip_freq = None。

至此,就能生成数据动画了,完整代码如下所示:​​​​​​​

from matplotlib import pyplot as pltimport pandas as pdimport pynimate as nim
df = pd.DataFrame(    {        "time": ["1960-01-01", "1961-01-01", "1962-01-01"],        "Afghanistan": [1, 2, 3],        "Angola": [2, 3, 4],        "Albania": [1, 2, 5],        "USA": [5, 3, 4],        "Argentina": [1, 4, 5],    }).set_index("time")
cnv = nim.Canvas()bar = nim.Barplot(df, "%Y-%m-%d", "2d")bar.set_time(callback=lambda i, datafier: datafier.data.index[i].year)cnv.add_plot(bar)cnv.animate()plt.show()

这是插值为两天,生成的动画效果。

最后还有一个问题,那就是保存动画,有两个格式可以选择:gif或者mp4。

保存为动图一般使用:

cnv.save("file", 24, "gif")
若要保存为mp4的话,ffmpeg是个不错的选择,它是保存为mp4的标准编写器。
 pip install ffmpeg-python
或者:
conda install ffmpeg

当然,同样也可以使用Canvas.save()来保存。

cnv.save("file", 24 ,"mp4")

作者介绍

julkar9,Python/Flutter 开发人员,研究的方向为数据分析与可视化。

小哥表示,Pynimate还会不断更新,目前正在接受大家的反馈,之后还会上线等值区域图等功能。

他还开发了一个应用程序:Chatmetry,同样也与数据统计有关,是一个用于创建whatsapp聊天统计数据的机器人应用程序。

这个程序可以从导出的聊天中生成各种统计信息,同时支持个人和群组聊天,并且是完全离线的,既不会保存也不会共享。

传送门:
https://julkaar9.github.io/pynimate/

相关文章:

手把手教你用Python做可视化数据,还能调节动画丝滑度

数据可视化动画还在用Excel做? 现在一个简单的Python包就能分分钟搞定! 而且生成的动画也足够丝滑,效果是酱紫的: 这是一位专攻Python语言的程序员开发的安装包,名叫Pynimate。 目前可以直接通过PyPI安装使用。 使用…...

湖南中创教育PMP项目管理——变更管理

【变更管理​】包括 一、如何理解需求变更 二、如何控制需求变更 三、项目变更管理流程 四、如何应对“奇葩”变更 一、如何理解需求变更: 1、项目中发生变更是正常现象,变更无法回避 2、哪里都可能出现变更,任何人都有权提出变更 3、…...

IC真题 —— 刷题记录(1)

引言 记录一些 我自己刷的 IC行业招聘真题,不是每题记录,只记录一些值得记录的,写下自己的看法。主要是一些数字IC行业题目,偏前端。 1、有一个逐次逼近型 8位A/D 转换器,若时钟频率为250KHz,完成一次转换…...

【C++入门】命名空间,输出输入,缺省参数,函数重载

文章目录命名空间C输入与输出缺省参数函数重载命名空间 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标 识符的名称进行本地化&#xff0…...

cmu 445 poject 2笔记

2022年的任务 https://15445.courses.cs.cmu.edu/fall2022/project2/ checkpoint 1,实现b树,读,写,删 checkpoint 2, 实现b树,迭代器,并发读写删 本文不写代码,只记录遇到的一些思维盲点 checkp…...

梅开二度的 axios 源码阅读,三千字详细分享功能函数,帮助扩展开发思维

前言 第一遍看 axios 源码,更多的是带着日常开发的习惯,时不时产生出点联想。 第二遍再看 axios 源码,目标明确,就是奔着函数来的。 当有了明确清晰的目标,阅读速度上来了,思绪也转的飞快。 按图索骥&a…...

vcs仿真教程

VCS是在linux下面用来进行仿真看波形的工具,类似于windows下面的modelsim以及questasim等工具,以及quartus、vivado仿真的操作。 1.vcs的基本指令 vcs的常见指令后缀 sim常见指令 2.使用vcs的实例 采用的是全加器的官方教程,首先介绍不使用…...

java 自定义json解析注解 复杂json解析 工具类

java 自定义json解析注解 复杂json解析 工具类 目录java 自定义json解析注解 复杂json解析 工具类1.背景2、需求-各式各样的json一、一星难度json【json对象中不分层】二、二星难度json【json对象中出现层级】三、三星难度json【json对象中存在数组】四、四星难度json【json对象…...

类的 6 个默认成员函数

文章目录一、构造函数1. 构造函数的定义2. 编译器生成的构造函数3. 默认构造函数4. 初始化列表5. 内置成员变量指定缺省值(C11)二、析构函数1. 析构函数的定义2. 编译器生成的析构函数3. 自己写的析构函数的执行方式三、拷贝构造函数1. C语言值传递和返回值时存在 bug2. 拷贝构…...

基于Verilog HDL的状态机描述方法

⭐本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。 🔥文章和代码已归档至【Github仓库&#xf…...

6年软件测试经历:成长、迷茫、奋斗

前言 测试工作6年,经历过不同产品、共事过不同专业背景、能力的同事,踩过测试各种坑、遇到过各种bug。测试职场生涯积极努力上进业务和技术能力快速进步过、也有努力付出却一无所得过、有对测试生涯前景充满希望认为一片朝气蓬勃过、也有对中年危机思考不…...

OpenMMLab AI实战营第五次课程

语义分割与MMSegmentation 什么是语义分割 任务: 将图像按照物体的类别分割成不同的区域 等价于: 对每个像素进行分类 应用:无人驾驶汽车 自动驾驶车辆,会将行人,其他车辆,行车道,人行道、交…...

【软考】系统集成项目管理工程师(二十)项目风险管理

一、项目风险管理概述1. 风险概念2. 风险分类3. 风险成本二、项目风险管理子过程1. 规划风险管理2. 识别风险3. 实施定性风险分析4. 实施定量风险分析5. 规划风险应对6. 控制风险三、项目风险管理流程梳理一、项目风险管理概述 1. 风险概念 风险是一种不确定事件或条件,一旦…...

2017-PMLR-Neural Message Passing for Quantum Chemistry

2017-PMLR-Neural Message Passing for Quantum Chemistry Paper: https://arxiv.org/pdf/1704.01212.pdf Code: https://github.com/brain-research/mpnn 量子化学的神经信息传递 这篇文献作者主要是总结了先前神经网络模型的共性,提出了一种消息传递神经网络&am…...

Python:每日一题之全球变暖(DFS连通性判断)

题目描述 你有一张某海域 NxN 像素的照片,"."表示海洋、"#"表示陆地,如下所示: ....... .##.... .##.... ....##. ..####. ...###. ....... 其中"上下左右"四个方向上连在一起的一片陆地组成一座岛屿…...

企业级安全软件装机量可能大增

声明 本文是学习大中型政企机构网络安全建设发展趋势研究报告. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 研究背景 大中型政企机构是网络安全保护的重中之重,也是国内网络安全建设投入最大,应用新技术、新产品最多的机构…...

为什么要用频谱分析仪测量频谱?

频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。从事通信工程的技术人员,在很多时候…...

Python环境搭建、Idea整合

1、学python先要下载什么? 2、python官网 3、idea配置Python 4、idea新建python 学python先要下载什么? python是一种语言,首先你需要下载python,有了python环境,你才可以在你的电脑上使用python。现在大多使用的是pyt…...

HTTP请求返回304状态码以及研究nginx中的304

文章目录1. 引出问题2. 分析问题3. 解决问题4. 研究nginx中的3044.1 启动服务4.2 ETag说明4.3 响应头Cache-Control1. 引出问题 之前在调试接口时,代码总出现304问题,如下所示: 2. 分析问题 HTTP 304: Not Modified是什么意思? …...

【GD32F427开发板试用】使用Arm-2D显示电池电量

本篇文章来自极术社区与兆易创新组织的GD32F427开发板评测活动,更多开发板试用活动请关注极术社区网站。作者:boc 【虽迟但到】 由于快递的原因,11月份申请的,12月1日才收到GD32F427开发板。虽然姗姗来迟,但也没有减少…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...