YOLOv5:GitHub两万八Star项目
来源:投稿 作者:王同学
编辑:学姐
Yolov5详解
官方源码仓库:https://github.com/ultralytics/yolov5
相关论文:未发表(改进点都被你们抢先发了)
0 前言
截止到2022年7月,Yolov5项目已经在Github上获得了28000+个star,工业应用也十分广泛,基于Yolov5改进的相关交叉学科论文也不计其数,所以了解Yolov5对找工作还是发论文都是十分有帮助的。
Yolov5目前已经迭代到了6.1版本,所以本篇文章主要针对6.1版本进行详解
Yolov5提供了10个不同版本的模型,他们除网络的深度和宽度外并无太大差别
1 网络结构
Yolov5主要由以下几部分组成:
- 输入端: Mosaic数据增强、自适应锚框计算
- Backbone: New CSP-Darknet53
- Neck: SPPF, FPN+PAN
- Head: YOLOv3 Head
- 训练策略:CIoU loss
2 输入端
2.1 Mosaic数据增强
在 YOLOv5 中除了使用最基本的数据增强方法外,还使用了 Mosaic 数据增强方法,其主要思想就是将1- 4 张图片进行随机裁剪、缩放后,再随机排列拼接形成一张图片,实现丰富数据集的同时,增加了小样本目标,提升网络的训练速度。在进行归一化操作时会一次性计算 4 张图片的数据,因此模型对内存的需求降低。
2.2自适应锚框计算
Yolov5每次训练时会自适应的计算不同训练集中的最佳锚框值,从而帮助网络更快的收敛。
3 Backbone
Yolov5在Backbone和Neck中用了两种不同的CSP结构,具体可参考下图-Yolov5网络结构图
4 Neck
和「Yolov4中一样,都采用FPN+PAN」的结构;即除了上采样外,又增加了一部分下采样模块,通过这种方式可以融合更加丰富的特征
5 Head
在检测头方面依然采用Yolov3的检测头,并没有特别的改进
6 主要训练策略
- CIoU loss:在DIoU的基础上增加了检测框尺度的loss,增加了长和宽的loss,这样预测框就会更加的符合真实框
- Multi-scale training(0.5~1.5x):多尺度训练。
- Warmup and Cosine LR scheduler:训练前先进行Warmup热身,然后在采用Cosine学习率下降策略。
- Mixed precision:混合精度训练,能够减少显存的占用并且加快训练速度。
7 损失计算
YOLOv5的损失主要由三个部分组成:
- Classes loss,分类损失,采用的是BCE loss,注意只计算正样本的分类损失。
- Objectness loss,obj损失,采用的依然是BCE loss,注意这里的obj指的是网络预测的目标边界框与GT Box的CIoU。这里计算的是所有样本的obj损失。
- Location loss,定位损失,采用的是CIoU loss,注意只计算正样本的定位损失。
在源码中,针对预测小目标的预测特征层(P3)采用的权重是4.0,针对预测中等目标的预测特征层(P4)采用的权重是1.0,针对预测大目标的预测特征层(P5)采用的权重是0.4,作者说这是针对COCO数据集设置的超参数。
最后附上一张Yolov5的性能图,和实际检测效果图(yolov5s);
YOLO论文+代码数据🚀🚀🚀
关注下方《学姐带你玩AI》
回复“YOLO”免费领取
码字不易,欢迎大家点赞评论收藏!
相关文章:
YOLOv5:GitHub两万八Star项目
来源:投稿 作者:王同学 编辑:学姐 Yolov5详解 官方源码仓库:https://github.com/ultralytics/yolov5 相关论文:未发表(改进点都被你们抢先发了) 0 前言 截止到2022年7月,Yolov5项…...
袋鼠云产品功能更新报告04期丨2023年首次,产品升级“狂飙”
新的一年我们加紧了更新迭代的速度,增加了数据湖平台EasyLake和大数据基础平台EasyMR,超40项功能升级优化。我们将继续保持产品升级节奏,满足不同行业用户的更多需求,为用户带来极致的产品使用体验。 以下为袋鼠云产品功能更新报…...
如何在Power Virtual Agents中使用Power Automate
今天我们来介绍一下如何在Power Virtual Agents中使用PowerAutomate。我们以通过在PVA聊天机器人的对话框中输入“发布通知”后会把预设好的通知信息自动发布到Teams中的某个团队中为例。首先进入PVA聊天机器人编辑界面后选择“主题”-“新建主题”。 在“新建主题”中添加“触…...
BXC6332A第二代智能头盔方案助力电动车市场,为安全保驾护航
随着2020年6月1日起,公安部交管局在全国开展“一盔一带”安全守护行动,摩托车、电动车驾驶人乘车人按照规定正确使用头盔,是保障司乘安全的一道重要屏障,据统计,摩托车、电动自行车驾乘人员死亡事故中约80%为颅脑损伤致…...
浮点数值计算精度丢失问题剖析及解决方法
文章目录1、原因分析2、解决方法2.1、Java中使用 BigDecimal 类2.2、JavaScript 中解决计算精度丢失的问题3、使用建议1、原因分析 首先我们来看个反直觉的浮点数值计算 System.out.println(0.3*3);有的同学可能要问为啥不是0.9? 首先要知道为什么会产生这个问题…...
字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
朴素的字符串匹配算法又称为暴力匹配算法(Brute Force Algorithm),最为简单的字符串匹配算法。算法简介朴素的字符串匹配算法又称为暴力匹配算法(Brute Force Algorithm),它的主要特点是:没有预…...
CVE-2021-42278 CVE-2021-42287域内提权漏洞
漏洞介绍2021 年 11 月 9 日,国外研究员在推特上发布了AD相关的 CVE,CVE-2021-42278 & CVE-2021-42287 ,两个漏洞组合可导致域内普通用户权限提升至域管权限。CVE-2021-42278:是一个安全绕过漏洞,允许通过修改机器…...
关于IcmpSendEcho2的使用和回调问题
由于我的需求是短时间内ping多台机子,所以需要异步执行,微软提供的例子是同步方式的,根据微软官方提供的icmpSendEcho2 函数的信息 ,我需要定义一个空的宏PIO_APC_ROUTINE_DEFINED ,定义完之后,编译又出现…...
XQuery 术语
在 XQuery 中,有七种节点:元素、属性、文本、命名空间、处理指令、注释、以及文档节点(或称为根节点)。 XQuery 术语 节点 在 XQuery 中,有七种节点:元素、属性、文本、命名空间、处理指令、注释、以及文…...
会议论文分享-Security22-状态感知符号执行
Ferry: State-Aware Symbolic Execution for Exploring State-Dependent Program Paths1.引言2.问题陈述与分析2.1.实现状态感知符号执行的挑战2.2.真实程序的特征2.3.Ferry的模型2.3.1.程序状态的定义2.3.2.状态描述变量的特征3.Design3.1.Overview of Ferry3.2.状态描述变量识…...
吴恩达深度学习笔记(八)——卷积神经网络(上)
一、卷积相关 用一个ff的过滤器卷积一个nn的图像,假如padding为p,步幅为s,输出大小则为: [n2p−fs1][n2p−fs1][\frac{n2p-f}{s}1][\frac{n2p-f}{s}1][sn2p−f1][sn2p−f1] []表示向下取整(floor) 大部分深度学习…...
14 基数排序(桶排序)
文章目录1 基数排序基本思想2 基数排序的代码实现2.1 java2.2 scala3 基数排序总结1 基数排序基本思想 1) 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort&#…...
汉明距离Java解法
两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。 给你两个整数 x 和 y,计算并返回它们之间的汉明距离。 例: 输入:x 1, y 4 输出:2 解释: 1 (0 0 0 1) 4 (0 1 0 0) ↑ ↑ 上…...
Netty服务端请求接受过程源码剖析
目标 服务器启动后,客户端进行连接,服务器端此时要接受客户端请求,并且返回给客户端想要的请求,下面我们的目标就是分析Netty 服务器端启动后是怎么接受到客户端请求的。我们的代码依然与上一篇中用同一个demo, 用io.…...
金三银四春招特供|高质量面试攻略
🔰 全文字数 : 1万5千 🕒 阅读时长 : 20min 📋 关键词 : 求职规划、面试准备、面试技巧、谈薪职级 👉 公众号 : 大摩羯先生 本篇来聊聊一个老生常谈的话题————“面试”。利用近三周工作午休时间整理了这篇洋洋洒洒却饱含真诚…...
搭建Hexo博客-第4章-绑定自定义域名
搭建Hexo博客-第4章-绑定自定义域名 搭建Hexo博客-第4章-绑定自定义域名 搭建Hexo博客-第4章-绑定自定义域名 在这一篇文章中,我将会介绍如何给博客绑定你自己的域名。其实绑定域名本应该很简单的,但我当初在这上走了不少弯路,所以我觉得有…...
lightdb-sql拦截
文章目录LightDB - sql 审核拦截一 简介二 参数2.1 lightdb_sql_mode2.2 lt_firewall.lightdb_business_time三 规则介绍及使用3.1 select_without_where3.1.1 案例3.2 update_without_where/delete_without_where3.2.1 案例3.3 high_risk_ddl3.3.1 案例LightDB - sql 审核拦截…...
二进制中1的个数-剑指Offer-java位运算
一、题目描述编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 1 的个数(也被称为 汉明重量).)。提示:请注意,在某些语言(如 Java&…...
学自动化测试可以用这几个练手项目
练手项目的业务逻辑比较简单,只适合练手,不能代替真实项目。 学习自动化测试最难的是没有合适的项目练习。 测试本身既要讲究科学,又有艺术成分,单单学几个 api 的调用很难应付工作中具体的问题。 你得知道什么场景下需要添加显…...
2023年保健饮品行业分析:市场规模不断攀升,年度销额增长近140%
随着人们健康意识的不断增强,我国保健品市场需求持续增长,同时,保健饮品的市场规模也在不断攀升。 根据鲸参谋电商数据显示,2022年度,京东平台上保健饮品的年度销量超60万件,同比增长了约124%;该…...
2023-02-17 学习记录--TS-邂逅TS(一)
TS-邂逅TS(一) 不积跬步,无以至千里;不积小流,无以成江海。💪🏻 一、TypeScript在线编译器 https://www.typescriptlang.org/play/ 二、类型 1、普通类型 number(数值型ÿ…...
SpringMVC创建异步回调请求的4种方式
首先要明确一点,同步请求和异步请求对于客户端用户来讲是一样的,都是需客户端等待返回结果。不同之处在于请求到达服务器之后的处理方式,下面用两张图解释一下同步请求和异步请求在服务端处理方式的不同:同步请求异步请求两个流程…...
MySQL(二)表的操作
一、创建表 CREATE TABLE table_name ( field1 datatype, field2 datatype, field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎; 说明: field 表示列名 datatype 表示列的类型 character set 字符集,如…...
SpringCloud - 入门
目录 服务架构演变 单体架构 分布式架构 分布式架构要考虑的问题 微服务 初步认识 案例Demo 服务拆分注意事项 服务拆分示例 服务调用 服务架构演变 单体架构 将业务的所有功能集中在一个项目中开发,打成一个包部署优点: 架构简单部署成本低缺…...
进一步了解C++函数的各种参数以及重载,了解C++部分的内存模型,C++独特的引用方式,巧妙替换指针,初步了解类与对象。满满的知识,希望大家能多多支持
C的编程精华,走过路过千万不要错过啊!废话少说,我们直接进入正题!!!! 函数高级 C的函数提高 函数默认参数 在C中,函数的形参列表中的形参是可以有默认值的。 语法:返…...
Chapter6:机器人SLAM与自主导航
ROS1{\rm ROS1}ROS1的基础及应用,基于古月的课,各位可以去看,基于hawkbot{\rm hawkbot}hawkbot机器人进行实际操作。 ROS{\rm ROS}ROS版本:ROS1{\rm ROS1}ROS1的Melodic{\rm Melodic}Melodic;实际机器人:Ha…...
Sass的使用要点
Sass 是一个 CSS 预处理器,完全兼容所有版本的 CSS。实际上,Sass 并没有真正为 CSS 语言添加任何新功能。只是在许多情况下可以可以帮助我们减少 CSS 重复的代码,节省开发时间。 一、注释 方式一:双斜线 // 方式二:…...
计算机启动过程,从按下电源按钮到登录界面的详细步骤
1、背景 自接触计算机以来,一直困扰着我一个问题。当我们按下电脑的开机键后,具体发生了哪些过程呢?计算机启动的具体步骤是什么? 计算机启动过程通常分为五个步骤:电源自检、BIOS自检、引导设备选择、引导程序加载和…...
LeetCode 刷题之 BFS 广度优先搜索【Python实现】
1. BFS 算法框架 BFS:用来搜索 最短路径 比较合适,如:求二叉树最小深度、最少步数、最少交换次数,一般与 队列 搭配使用,空间复杂度比 DFS 大很多DFS:适合搜索全部的解,如:寻找最短…...
Hadoop01【尚硅谷】
大数据学习笔记 大数据概念 大数据:指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 主要解决,海量数据的存储…...
wap企业网站源码/提高工作效率整改措施
Chapter 9 TheFile System(文件系统)二----Linux Kernel 学习笔记十9.2 The Virtual File System(虚拟文件系统 VFS)图9.4显示了Linux核心的虚拟文件系统和它的真实的文件系统之间的关系。虚拟文件系统必须管理任何时间安装的所有的不同的文件系统。为此它管理描述整个文件系统…...
公司内部网站建设方案/引擎搜索对人类记忆的影响
1、手机上有很多输入设备,这些设备的编号每个手机都不同,因此我们需要首先了解这个手机上都有哪些输入设备,下面以我的NexusS为例: http://3ms.huawei.com/hi/blog/24021_1097091.html 【Android学习笔记】用 sendevent 模拟手机…...
做网站设计的电脑需要什么配置/超八成搜索网站存在信息泄露问题
使用注解配置 步骤 导包(421)基本4个组件包加2个日志包(log4j,logging),再加aop 将对象注册到容器中spring 中提供Component 的三个衍生注解:(功能目前来讲是一致的) 如果不指定任何属性时,默认使用短类名作为bean的id(首字母改成小写) Component("…...
做苗木网站哪家做得好/长春做网站推荐选吉网传媒好
洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 1 #include <bits/stdc.h>2 #define For(i, j, k) for(int ij; i<k; i)3 #define Dow(i, j, k) for(int ij; i>k; i--)4 #define LL…...
b2b网站怎么注册/全球疫情最新消息
给定一个带有头结点 head 的非空单链表,返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4,5]) 返回的结点值为 3 。 (…...
网站空间文件删不掉/百度热度
MySQL经典50题-2-解决字符集问题在创建完数据库和表之后,需要插入模拟数据。在插入的过程中就碰到了问题,此文作为记录解决字符集的问题修改MySQL字符集查看库、表、字段的字符集指定表、字段的字符集创建表学生表mysql> create table Student(-> …...