Zookeeper+kafka
目录
1. Zookeeper定义
2. Zookeeper工作机制
3. Zookeeper特点
4. Zookeeper数据结构
5. Zookeeper应用场景
5.1 统一命名服务
5.2 统一配置管理
5.3 统一集群管理
5.4 服务器动态上下线
5.5 软负载均衡
6. Zookeeper 选举机制
6.1 第一次启动选举机制
6.2 非第一次启动选举机制
6.3 选举常用名词
2. Kafka
2.1 Kafka定义
2.2 Kafka简介
2.3 Kafka的特性
2.3.1 高吞吐量、低延迟
2.3.2 可扩展性
2.3.3 持久性、可靠性
2.3.4 容错性
2.3.5 高并发
2.4 Kafka系统架构
2.4.1 Broker
2.4.2 Topic
2.4.3 Partition
2.4.3.1 Partation 数据路由规则:
2.4.3.2 消息编号
2.4.3.3 数据存储
2.4.3.4 保证顺序的一致性
2.4.3.5 分区的原因
2.4.3.6 总结
2.4.4 Replica
2.4.5 Leader
2.4.6 Follower
2.4.7 Producer
2.4.8 Consumer
2.4.9 Consumer Group(CG)
2.4.10 offset 偏移量
2.4.11 Zookeeper
1. Zookeeper定义
Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。
2. Zookeeper工作机制
Zookeeper从设计模式角度来理解:
是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者作出相应的反应。也就是说Zookeeper=文件系统+通知机制。
3. Zookeeper特点
(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
(2)Zookeeper集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。
(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。
(5)数据更新原子性,一次数据更新要么成功,要么失败。
(6)实时性,在一定时间范围内,Client能读到最新数据。
4. Zookeeper数据结构
ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。
5. Zookeeper应用场景
提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。
5.1 统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。
5.2 统一配置管理
(1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
(2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。
5.3 统一集群管理
(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
(2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。
5.4 服务器动态上下线
客户端能实时洞察到服务器上下线的变化。
5.5 软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
6. Zookeeper 选举机制
6.1 第一次启动选举机制
(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
(3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;
(4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;(5)服务器5启动,同4一样当小弟。
6.2 非第一次启动选举机制
(1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:
1)服务器初始化启动。
2)服务器运行期间无法和Leader保持连接。
(2)而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
1)集群中本来就已经存在一个Leader。
对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
2)集群中确实不存在Leader。
假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
选举Leader规则:
1.EPOCH大的直接胜出
2.EPOCH相同,事务id大的胜出
3.事务id相同,服务器id大的胜出
6.3 选举常用名词
SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加
2. Kafka
2.1 Kafka定义
Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。
2.2 Kafka简介
Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,
Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
2.3 Kafka的特性
2.3.1 高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。
2.3.2 可扩展性
kafka 集群支持热扩展
2.3.3 持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
2.3.4 容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)
2.3.5 高并发
支持数千个客户端同时读写
2.4 Kafka系统架构
2.4.1 Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。
2.4.2 Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储
2.4.3 Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
2.4.3.1 Partation 数据路由规则:
1.指定了 patition,则直接使用;
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
3.patition 和 key 都未指定,使用轮询选出一个 patition。
2.4.3.2 消息编号
每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
2.4.3.3 数据存储
每个 partition 中的数据使用多个 segment 文件存储。
2.4.3.4 保证顺序的一致性
如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。
2.4.3.5 分区的原因
● 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
● 可以提高并发,因为可以以Partition为单位读写了。
2.4.3.6 总结
● broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
● 如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
● 如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
2.4.4 Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
2.4.5 Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。
2.4.6 Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。
2.4.7 Producer
生产者即数据的发布者,该角色将消息发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。
2.4.8 Consumer
消费者可以从 broker 中读取数据。消费者可以消费多个 topic 中的数据。
2.4.9 Consumer Group(CG)
消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。
2.4.10 offset 偏移量
可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。
2.4.11 Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。
相关文章:

Zookeeper+kafka
目录 1. Zookeeper定义 2. Zookeeper工作机制 3. Zookeeper特点 4. Zookeeper数据结构 5. Zookeeper应用场景 5.1 统一命名服务 5.2 统一配置管理 5.3 统一集群管理 5.4 服务器动态上下线 5.5 软负载均衡 6. Zookeeper 选举机制 6.1 第一次启动选举机制 6.2 非第一…...

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二)
Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二) 在开始这个专栏,我们需要找一个小程序为参考,参考和仿照其界面,聊天交互模式。 这里参考小程序-小柠AI智能聊天,可自行先体验。 该小程序主要提供了…...

Flask进阶:构建RESTful API和数据库交互
在初级教程中,我们已经介绍了如何使用Flask构建基础的Web应用。在本篇中级教程中,我们将学习如何用Flask构建RESTful API,以及如何使用Flask-SQLAlchemy进行数据库操作。 一、构建RESTful API REST(Representational State Tran…...

6.9(Java)二叉搜索树
1.我的代码: public class BinarySearchTree {class TreeNode {public int key;public TreeNode left;public TreeNode right;public TreeNode(int key) {this.key key;}}public TreeNode root; // 根节点// 插入一个元素,注意,不能插入重复的值,如…...

洛谷P2256 一中校运会之百米跑
题目背景 在一大堆秀恩爱的 ** 之中,来不及秀恩爱的苏大学神踏着坚定(?)的步伐走向了 100 100 100 米跑的起点。这时苏大学神发现,百米赛跑的参赛同学实在是太多了,连体育老师也忙不过来。这时体育老师发…...

python-opencv对极几何 StereoRectify
OpenCV如何正确使用stereoRectify函数 函数介绍 用于双目相机的立体校正环节中,这里只谈谈这个函数怎么使用,参数具体指哪些函数参数 随便去网上一搜或者看官方手册就能得到参数信息,但是!!相对关系非常容易出错&…...

pom文件---maven
027-Maven 命令行-实验四-生成 Web 工程-执行生成_ev_哔哩哔哩_bilibili 27节.后续补充 一.maven下载安装及配置 1)maven下载 2) settings文件配置本地仓库 3)settings配置远程仓库地址 4)配置maven工程的基础JDK版本 5)确认JDK环境变量配置没问题,配置maven的环境变量 验证…...

界面控件DevExpress.Drawing图形库早期增强功能分享
众所周知,DevExpress在v22.2发布周期中引入了全新的DevExpress.Drawing图形库(并且已经在随后的小更新中引入了一系列增强功能)。 在这篇博文中,我们将总结在DevExpress v23.1中解决的一些问题,以及在EAP构建中为以下…...

Semantic Kernel 入门系列:Connector连接器
当我们使用Native Function的时候,除了处理一些基本的逻辑操作之外,更多的还是需要进行外部数据源和服务的对接,要么是获取相关的数据,要么是保存输出结果。这一过程在Semantic Kernel中可以被归类为Connector。 Connector更像是…...

Maven介绍-下载-安装-使用-基础知识
Maven介绍-下载-安装-使用-基础知识 Maven的进阶高级用法可查看这篇文章: Maven分模块-继承-聚合-私服的高级用法 文章目录 Maven介绍-下载-安装-使用-基础知识01. Maven1.1 初识Maven1.1.1 什么是Maven1.1.2 Maven的作用 02. Maven概述2.1 Maven介绍2.2 Maven模型…...

Ansible环境搭建,CentOS 系列操作系统搭建Ansible集群环境
Ansible是一种自动化工具,基于Python写的,原理什么的就不过多再说了,详情参考:https://www.itwk.cc/post/403.html https://blog.csdn.net/qq_34185638/article/details/131079320?spm1001.2014.3001.5502 环境准备 HOSTNAMEIP…...

Django基础
1.Django基础 路由系统视图模板静态文件和媒体文件中间件ORM(时间) 2.路由系统 本质上:URL和函数的对应关系。 2.1 传统的路由 from django.contrib import admin from django.urls import path from apps.web import viewsurlpatterns …...

HTML,url,unicode编码
目录标题 HTML实体编码urlcode编码unicode编码小结基础例题高级例题 HTML实体编码 实体表示: 以&符号开始,后面跟着一个预定义的实体的名称,或是一个#符号以及字符的十进制数字。 例: <p>hello</p> <!-- 等同…...

Hbase-热点问题(数据存储倾斜问题)
1. 危害 某一台regionserver消耗过多,承受过多的并发量,时间长机器性能下降,甚至宕机 2. 解决 可以通过设计rowkey预分区的方法解决 比如可以预分区120个,1月的数据存到1-10分区,每个月的数据存到10个分区ÿ…...

一个基于Java线程池管理的开源框架Hippo4j实践
线程池痛点 线程池是一种基于池化思想管理线程的工具,使用线程池可以减少创建销毁线程的开销,避免线程过多导致系统资源耗尽。在高并发以及大批量的任务处理场景,线程池的使用是必不可少的。线程池常见痛点: 线程池随便定义&…...

源码解析Flink源节点数据读取是如何与checkpoint串行执行
文章目录 源码解析Flink源节点数据读取是如何与checkpoint串行执行Checkpoint阶段StreamTask类变量actionExecutor的实现和初始化小结 数据读取阶段小结 总结 源码解析Flink源节点数据读取是如何与checkpoint串行执行 Flink版本:1.13.6 前置知识:源节点…...

进阶:Docker容器管理工具——Docker-Compose使用
文章目录 前言Compose大杀器编排服务 1、docker-compose安装curl方式安装增加可执行权限查看版本 2、Docker-compose.yaml命令3、 docker-compose实战4、Docker网络路由docker的跨主机网络路由**问题由来**:方案两台机分别配置路由表ip_forward配置 总结 前言 容器的管理工具&…...

策略模式(Strategy)
策略模式是一种行为设计模式,就是定义一系列算法,然后将每一个算法封装起来,并使它们可相互替换。本模式通过定义一组可相互替换的算法,实现将算法独立于使用它的用户而变化。 Strategy is a behavioral design pattern that def…...

webpack基础知识十:与webpack类似的工具还有哪些?区别?
一、模块化工具 模块化是一种处理复杂系统分解为更好的可管理模块的方式 可以用来分割,组织和打包应用。每个模块完成一个特定的子功能,所有的模块按某种方法组装起来,成为一个整体(bundle) 在前端领域中,并非只有webpack这一款…...

分享kubernetes部署:基于Ansible自动安装kubernetes
基于Ansible自动安装kubernetes 环境准备 我们以如下机器环境为例: 开放端口: 控制平面节点 工作节点 请按如上中规定的开放端口,或关闭防火墙: systemctlstopfirewalld&&\ systemctldisablefirewalld 安装常用工具 sudo…...

【Kubernetes部署篇】基于Ubuntu20.04操作系统搭建K8S1.23版本集群
文章目录 一、集群架构规划信息二、系统初始化准备(所有节点同步操作)三、安装kubeadm(所有节点同步操作)四、初始化K8S集群(master节点操作)五、添加Node节点到K8S集群中六、安装Calico网络插件七、测试CoreDNS可用性 一、集群架构规划信息 pod网段:10.244.0.0/16…...

c++--二叉树应用
1.根据二叉树创建字符串 力扣 给你二叉树的根节点 root ,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。 空节点使用一对空括号对 "()" 表示,转化后需要省略所有不影响字符…...

以太网DHCP协议(十)
目录 一、工作原理 二、DHCP报文 2.1 DHCP报文类型 2.2 DHCP报文格式 当网络内部的主机设备数量过多是,IP地址的手动设置是一件非常繁琐的事情。为了实现自动设置IP地址、统一管理IP地址分配,TCPIP协议栈中引入了DHCP协议。 一、工作原理 使用DHCP之…...

企业服务器器中了360后缀勒索病毒怎么解决,勒索病毒解密数据恢复
随着网络威胁的增加,企业服务器成为黑客攻击的目标之一。近期,上海某知名律师事务所的数据库遭到了360后缀的勒索病毒攻击,导致企业服务器内的数据库被360后缀勒索病毒加密。许多重要的数据被锁定无法正常读取,严重影响了企业的正…...

详解Kafka分区机制原理|Kafka 系列 二
Kafka 系列第二篇,详解分区机制原理。为了不错过更新,请大家将本号“设为星标”。 点击上方“后端开发技术”,选择“设为星标” ,优质资源及时送达 上一篇文章介绍了 Kafka 的基本概念和术语,里面有个概念是 分区(Part…...

CSS学习记录(基础笔记)
CSS简介: CSS 指的是层叠样式表* (Cascading Style Sheets),主要用于设置HTML页面的文字内容(字体、大小、对齐方式),图片的外形(边框) CSS 描述了如何在屏幕、纸张或其他媒体上显示 HTML 元素 CSS 节省…...

Chatgpt AI newbing作画,文字生成图 BingImageCreator 二次开发,对接wxbot
开源项目 https://github.com/acheong08/BingImageCreator 获取cookie信息 cookieStore.get("_U").then(result > console.log(result.value)) pip3 install --upgrade BingImageCreator import os import BingImageCreatoros.environ["http_proxy"]…...

PPT忘记密码如何解除?
PPT文件所带有的两种加密方式,打开密码以及修改权限,两种密码在打开文件的时候都会有相应的提示,但不同的是两种加密忘记密码之后是不同的。 如果忘记了打开密码,我们就没办法打开PPT文件了;如果是忘记了修改密码&…...

绘制曲线python
文章目录 import matplotlib.pyplot as plt# 提供的数据 x= [1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2…...

CentOs 8 常见问题处理
CentOs 8 常见问题处理 vmware虚拟机新增网卡操作 vmware虚拟机新增网卡操作 [rootcentos ~]# ip add 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00inet 127.0…...